/usr/share/octave/packages/control-3.0.0/dlyapchol.m is in octave-control 3.0.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | ## Copyright (C) 2009-2015 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {@var{u} =} dlyapchol (@var{a}, @var{b})
## @deftypefnx{Function File} {@var{u} =} dlyapchol (@var{a}, @var{b}, @var{e})
## Compute Cholesky factor of discrete-time Lyapunov equations.
##
## @strong{Equations}
## @example
## @group
## A U' U A' - U' U + B B' = 0 (Lyapunov Equation)
##
## A U' U A' - E U' U E' + B B' = 0 (Generalized Lyapunov Equation)
## @end group
## @end example
##
## @strong{Algorithm}@*
## Uses SLICOT SB03OD and SG03BD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
##
## @seealso{dlyap, lyap, lyapchol}
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: January 2010
## Version: 0.2.1
function [u, scale] = dlyapchol (a, b, e)
switch (nargin)
case 2
if (! is_real_square_matrix (a))
## error ("dlyapchol: a must be real and square");
error ("dlyapchol: %s must be real and square", ...
inputname (1));
endif
if (! is_real_matrix (b))
## error ("dlyapchol: b must be real")
error ("dlyapchol: %s must be real", ...
inputname (2))
endif
if (rows (a) != rows (b))
## error ("dlyapchol: a and b must have the same number of rows");
error ("dlyapchol: %s and %s must have the same number of rows", ...
inputname (1), inputname (2));
endif
[u, scale] = __sl_sb03od__ (a.', b.', true);
## NOTE: TRANS = 'T' not suitable because we need U' U, not U U'
case 3
if (! is_real_square_matrix (a, e))
## error ("dlyapchol: a, e must be real and square");
error ("dlyapchol: %s, %s must be real and square", ...
inputname (1), inputname (3));
endif
if (! is_real_matrix (b))
## error ("dlyapchol: b must be real");
error ("dlyapchol: %s must be real", ...
inputname (2));
endif
if (rows (b) != rows (a) || rows (e) != rows (a))
## error ("dlyapchol: a, b, e must have the same number of rows");
error ("dlyapchol: %s, %s, %s must have the same number of rows", ...
inputname (1), inputname (2), inputname (3));
endif
[u, scale] = __sl_sg03bd__ (a.', e.', b.', true);
## NOTE: TRANS = 'T' not suitable because we need U' U, not U U'
otherwise
print_usage ();
endswitch
if (scale < 1)
warning ("dlyapchol: solution scaled by %g to prevent overflow", scale);
endif
endfunction
## TODO: add tests
|