/usr/share/octave/packages/control-3.0.0/h2syn.m is in octave-control 3.0.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 | ## Copyright (C) 2009-2015 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {[@var{K}, @var{N}, @var{gamma}, @var{info}] =} h2syn (@var{P}, @var{nmeas}, @var{ncon})
## @deftypefnx{Function File} {[@var{K}, @var{N}, @var{gamma}, @var{info}] =} h2syn (@var{P})
## H-2 control synthesis for @acronym{LTI} plant.
##
## @strong{Inputs}
## @table @var
## @item P
## Generalized plant. Must be a proper/realizable @acronym{LTI} model.
## If @var{P} is constructed with @command{mktito} or @command{augw},
## arguments @var{nmeas} and @var{ncon} can be omitted.
## @item nmeas
## Number of measured outputs v. The last @var{nmeas} outputs of @var{P} are connected to the
## inputs of controller @var{K}. The remaining outputs z (indices 1 to p-nmeas) are used
## to calculate the H-2 norm.
## @item ncon
## Number of controlled inputs u. The last @var{ncon} inputs of @var{P} are connected to the
## outputs of controller @var{K}. The remaining inputs w (indices 1 to m-ncon) are excited
## by a harmonic test signal.
## @end table
##
## @strong{Outputs}
## @table @var
## @item K
## State-space model of the H-2 optimal controller.
## @item N
## State-space model of the lower LFT of @var{P} and @var{K}.
## @item info
## Structure containing additional information.
## @item info.gamma
## H-2 norm of @var{N}.
## @item info.rcond
## Vector @var{rcond} contains estimates of the reciprocal condition
## numbers of the matrices which are to be inverted and
## estimates of the reciprocal condition numbers of the
## Riccati equations which have to be solved during the
## computation of the controller @var{K}. For details,
## see the description of the corresponding SLICOT routine.
## @end table
##
## @strong{Block Diagram}
## @example
## @group
##
## gamma = min||N(K)|| N = lft (P, K)
## K 2
##
## +--------+
## w ----->| |-----> z
## | P(s) |
## u +---->| |-----+ v
## | +--------+ |
## | |
## | +--------+ |
## +-----| K(s) |<----+
## +--------+
##
## +--------+
## w ----->| N(s) |-----> z
## +--------+
## @end group
## @end example
##
## @strong{Algorithm}@*
## Uses SLICOT SB10HD and SB10ED by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
##
## @seealso{augw, lqr, dlqr, kalman}
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: December 2009
## Version: 0.3
function [K, varargout] = h2syn (P, nmeas, ncon)
## check input arguments
if (nargin != 1 && nargin != 3)
print_usage ();
endif
if (! isa (P, "lti"))
error ("h2syn: first argument must be an LTI system");
endif
if (nargin == 1)
[nmeas, ncon] = __tito_dim__ (P, "h2syn");
endif
if (! is_real_scalar (nmeas))
error ("h2syn: second argument 'nmeas' invalid");
endif
if (! is_real_scalar (ncon))
error ("h2syn: third argument 'ncon' invalid");
endif
[a, b, c, d, tsam] = ssdata (P);
## check assumptions A1 - A3
m = columns (b);
p = rows (c);
m1 = m - ncon;
p1 = p - nmeas;
d11 = d(1:p1, 1:m1);
if (isct (P) && any (d11(:)))
warning ("h2syn: setting matrice D11 to zero");
d(1:p1, 1:m1) = 0;
endif
if (! isstabilizable (P(:, m1+1:m)))
error ("h2syn: (A, B2) must be stabilizable");
endif
if (! isdetectable (P(p1+1:p, :)))
error ("h2syn: (C2, A) must be detectable");
endif
## H-2 synthesis
if (isct (P)) # continuous plant
[ak, bk, ck, dk, rcond] = __sl_sb10hd__ (a, b, c, d, ncon, nmeas);
else # discrete plant
[ak, bk, ck, dk, rcond] = __sl_sb10ed__ (a, b, c, d, ncon, nmeas);
endif
## controller
K = ss (ak, bk, ck, dk, tsam);
if (nargout > 1)
N = lft (P, K);
varargout{1} = N;
if (nargout > 2)
gamma = norm (N, 2);
varargout{2} = gamma;
if (nargout > 3)
varargout{3} = struct ("gamma", gamma, "rcond", rcond);
endif
endif
endif
endfunction
## continuous-time case
%!shared M, M_exp
%! A = [-1.0 0.0 4.0 5.0 -3.0 -2.0
%! -2.0 4.0 -7.0 -2.0 0.0 3.0
%! -6.0 9.0 -5.0 0.0 2.0 -1.0
%! -8.0 4.0 7.0 -1.0 -3.0 0.0
%! 2.0 5.0 8.0 -9.0 1.0 -4.0
%! 3.0 -5.0 8.0 0.0 2.0 -6.0];
%!
%! B = [-3.0 -4.0 -2.0 1.0 0.0
%! 2.0 0.0 1.0 -5.0 2.0
%! -5.0 -7.0 0.0 7.0 -2.0
%! 4.0 -6.0 1.0 1.0 -2.0
%! -3.0 9.0 -8.0 0.0 5.0
%! 1.0 -2.0 3.0 -6.0 -2.0];
%!
%! C = [ 1.0 -1.0 2.0 -4.0 0.0 -3.0
%! -3.0 0.0 5.0 -1.0 1.0 1.0
%! -7.0 5.0 0.0 -8.0 2.0 -2.0
%! 9.0 -3.0 4.0 0.0 3.0 7.0
%! 0.0 1.0 -2.0 1.0 -6.0 -2.0];
%!
%! D = [ 0.0 0.0 0.0 -4.0 -1.0
%! 0.0 0.0 0.0 1.0 0.0
%! 0.0 0.0 0.0 0.0 1.0
%! 3.0 1.0 0.0 1.0 -3.0
%! -2.0 0.0 1.0 7.0 1.0];
%!
%! P = ss (A, B, C, D);
%! K = h2syn (P, 2, 2);
%! M = [K.A, K.B; K.C, K.D];
%!
%! KA = [ 88.0015 -145.7298 -46.2424 82.2168 -45.2996 -31.1407
%! 25.7489 -31.4642 -12.4198 9.4625 -3.5182 2.7056
%! 54.3008 -102.4013 -41.4968 50.8412 -20.1286 -26.7191
%! 108.1006 -198.0785 -45.4333 70.3962 -25.8591 -37.2741
%! -115.8900 226.1843 47.2549 -47.8435 -12.5004 34.7474
%! 59.0362 -101.8471 -20.1052 36.7834 -16.1063 -26.4309];
%!
%! KB = [ 3.7345 3.4758
%! -0.3020 0.6530
%! 3.4735 4.0499
%! 4.3198 7.2755
%! -3.9424 -10.5942
%! 2.1784 2.5048];
%!
%! KC = [ -2.3346 3.2556 0.7150 -0.9724 0.6962 0.4074
%! 7.6899 -8.4558 -2.9642 7.0365 -4.2844 0.1390];
%!
%! KD = [ 0.0000 0.0000
%! 0.0000 0.0000];
%!
%! M_exp = [KA, KB; KC, KD];
%!
%!assert (M, M_exp, 1e-4);
## discrete-time case
%!shared M, M_exp
%! A = [-0.7 0.0 0.3 0.0 -0.5 -0.1
%! -0.6 0.2 -0.4 -0.3 0.0 0.0
%! -0.5 0.7 -0.1 0.0 0.0 -0.8
%! -0.7 0.0 0.0 -0.5 -1.0 0.0
%! 0.0 0.3 0.6 -0.9 0.1 -0.4
%! 0.5 -0.8 0.0 0.0 0.2 -0.9];
%!
%! B = [-1.0 -2.0 -2.0 1.0 0.0
%! 1.0 0.0 1.0 -2.0 1.0
%! -3.0 -4.0 0.0 2.0 -2.0
%! 1.0 -2.0 1.0 0.0 -1.0
%! 0.0 1.0 -2.0 0.0 3.0
%! 1.0 0.0 3.0 -1.0 -2.0];
%!
%! C = [ 1.0 -1.0 2.0 -2.0 0.0 -3.0
%! -3.0 0.0 1.0 -1.0 1.0 0.0
%! 0.0 2.0 0.0 -4.0 0.0 -2.0
%! 1.0 -3.0 0.0 0.0 3.0 1.0
%! 0.0 1.0 -2.0 1.0 0.0 -2.0];
%!
%! D = [ 1.0 -1.0 -2.0 0.0 0.0
%! 0.0 1.0 0.0 1.0 0.0
%! 2.0 -1.0 -3.0 0.0 1.0
%! 0.0 1.0 0.0 1.0 -1.0
%! 0.0 0.0 1.0 2.0 1.0];
%!
%! P = ss (A, B, C, D, 1); # value of sampling time doesn't matter
%! K = h2syn (P, 2, 2);
%! M = [K.A, K.B; K.C, K.D];
%!
%! KA = [-0.0551 -2.1891 -0.6607 -0.2532 0.6674 -1.0044
%! -1.0379 2.3804 0.5031 0.3960 -0.6605 1.2673
%! -0.0876 -2.1320 -0.4701 -1.1461 1.2927 -1.5116
%! -0.1358 -2.1237 -0.9560 -0.7144 0.6673 -0.7957
%! 0.4900 0.0895 0.2634 -0.2354 0.1623 -0.2663
%! 0.1672 -0.4163 0.2871 -0.1983 0.4944 -0.6967];
%!
%! KB = [-0.5985 -0.5464
%! 0.5285 0.6087
%! -0.7600 -0.4472
%! -0.7288 -0.6090
%! 0.0532 0.0658
%! -0.0663 0.0059];
%!
%! KC = [ 0.2500 -1.0200 -0.3371 -0.2733 0.2747 -0.4444
%! 0.0654 0.2095 0.0632 0.2089 -0.1895 0.1834];
%!
%! KD = [-0.2181 -0.2070
%! 0.1094 0.1159];
%!
%! M_exp = [KA, KB; KC, KD];
%!
%!assert (M, M_exp, 1e-4);
|