This file is indexed.

/usr/share/octave/packages/control-3.0.0/hinfsyn.m is in octave-control 3.0.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
## Copyright (C) 2009-2015   Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {[@var{K}, @var{N}, @var{gamma}, @var{info}] =} hinfsyn (@var{P}, @var{nmeas}, @var{ncon})
## @deftypefnx{Function File} {[@var{K}, @var{N}, @var{gamma}, @var{info}] =} hinfsyn (@var{P}, @var{nmeas}, @var{ncon}, @dots{})
## @deftypefnx{Function File} {[@var{K}, @var{N}, @var{gamma}, @var{info}] =} hinfsyn (@var{P}, @var{nmeas}, @var{ncon}, @var{opt}, @dots{})
## @deftypefnx{Function File} {[@var{K}, @var{N}, @var{gamma}, @var{info}] =} hinfsyn (@var{P}, @dots{})
## @deftypefnx{Function File} {[@var{K}, @var{N}, @var{gamma}, @var{info}] =} hinfsyn (@var{P}, @var{opt}, @dots{})
## H-infinity control synthesis for @acronym{LTI} plant.
##
## @strong{Inputs}
## @table @var
## @item P
## Generalized plant.  Must be a proper/realizable @acronym{LTI} model.
## If @var{P} is constructed with @command{mktito} or @command{augw},
## arguments @var{nmeas} and @var{ncon} can be omitted.
## @item nmeas
## Number of measured outputs v.  The last @var{nmeas} outputs of @var{P} are connected to the
## inputs of controller @var{K}.  The remaining outputs z (indices 1 to p-nmeas) are used
## to calculate the H-infinity norm.
## @item ncon
## Number of controlled inputs u.  The last @var{ncon} inputs of @var{P} are connected to the
## outputs of controller @var{K}.  The remaining inputs w (indices 1 to m-ncon) are excited
## by a harmonic test signal.
## @item @dots{}
## Optional pairs of keys and values.  @code{'key1', value1, 'key2', value2}.
## @item opt
## Optional struct with keys as field names.
## Struct @var{opt} can be created directly or
## by function @command{options}.  @code{opt.key1 = value1, opt.key2 = value2}.
## @end table
##
## @strong{Outputs}
## @table @var
## @item K
## State-space model of the H-infinity (sub-)optimal controller.
## @item N
## State-space model of the lower LFT of @var{P} and @var{K}.
## @item info
## Structure containing additional information.
## @item info.gamma
## L-infinity norm of @var{N}.
## @item info.rcond
## Vector @var{rcond} contains estimates of the reciprocal condition
## numbers of the matrices which are to be inverted and
## estimates of the reciprocal condition numbers of the
## Riccati equations which have to be solved during the
## computation of the controller @var{K}.  For details,
## see the description of the corresponding SLICOT routine.
## @end table
##
## @strong{Option Keys and Values}
## @table @var
## @item 'method'
## String specifying the desired kind of controller:
## @table @var
## @item 'optimal', 'opt', 'o'
## Compute optimal controller using gamma iteration.
## Default selection for compatibility reasons.
## @item 'suboptimal', 'sub', 's'
## Compute (sub-)optimal controller.  For stability reasons,
## suboptimal controllers are to be preferred over optimal ones.
## @end table
## @item 'gmax'
## The maximum value of the H-infinity norm of @var{N}.
## It is assumed that @var{gmax} is sufficiently large
## so that the controller is admissible.  Default value is 1e15.
## @item 'gmin'
## Initial lower bound for gamma iteration.  Default value is 0.
## @var{gmin} is only meaningful for optimal discrete-time controllers.
## @item 'tolgam'
## Tolerance used for controlling the accuracy of @var{gamma}
## and its distance to the estimated minimal possible
## value of @var{gamma}.  Default value is 0.01.
## If @var{tolgam} = 0, then a default value equal to @code{sqrt(eps)}
## is used, where @var{eps} is the relative machine precision.
## For suboptimal controllers, @var{tolgam} is ignored.
## @item 'actol'
## Upper bound for the poles of the closed-loop system @var{N}
## used for determining if it is stable.
## @var{actol} >= 0 for stable systems.
## For suboptimal controllers, @var{actol} is ignored.
## @end table
##
## @strong{Block Diagram}
## @example
## @group
##
## gamma = min||N(K)||             N = lft (P, K)
##          K         inf
##
##                +--------+  
##        w ----->|        |-----> z
##                |  P(s)  |
##        u +---->|        |-----+ v
##          |     +--------+     |
##          |                    |
##          |     +--------+     |
##          +-----|  K(s)  |<----+
##                +--------+
##
##                +--------+      
##        w ----->|  N(s)  |-----> z
##                +--------+
## @end group
## @end example
##
## @strong{Algorithm}@*
## Uses SLICOT SB10FD, SB10DD and SB10AD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
##
## @seealso{augw, mixsyn}
## @end deftypefn

## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: December 2009
## Version: 0.3

function [K, varargout] = hinfsyn (P, varargin)

  ## check input arguments
  if (nargin == 0)
    print_usage ();
  endif

  if (! isa (P, "lti"))
    error ("hinfsyn: first argument must be an LTI system");
  endif
  
  if (nargin == 1 || (nargin > 1 && ! is_real_scalar (varargin{1})))    # hinfsyn (P, ...)
    [nmeas, ncon] = __tito_dim__ (P, "hinfsyn");
  elseif (nargin >= 3)                          # hinfsyn (P, nmeas, ncon, ...)
    nmeas = varargin{1};
    ncon = varargin{2};
    varargin = varargin(3:end);
  else
    print_usage ();
  endif
  
  if (! is_real_scalar (nmeas))
    error ("hinfsyn: second argument 'nmeas' invalid");
  endif
  
  if (! is_real_scalar (ncon))
    error ("hinfsyn: third argument 'ncon' invalid");
  endif
  
  if (numel (varargin) > 0 && isstruct (varargin{1}))   # hinfsyn (P, nmeas, ncon, opt, ...), hinfsyn (P, opt, ...)
    varargin = horzcat (__opt2cell__ (varargin{1}), varargin(2:end));
  endif

  nkv = numel (varargin);   # number of keys and values
  
  if (rem (nkv, 2))
    error ("hinfsyn: keys and values must come in pairs");
  endif
  
  ## default arguments
  gmax = 1e15;
  gmin = 0;
  tolgam = 0.01;
  actol = eps;              # tolerance for stability margin
  method = "opt";
  
  ## handle keys and values
  for k = 1 : 2 : nkv
    key = lower (varargin{k});
    val = varargin{k+1};
    switch (key)
      case "gmax"
        if (! is_real_scalar (val) || val < 0)
          error ("hinfsyn: 'gmax' must be a real-valued, non-negative scalar");
        endif
        gmax = val;
      case "gmin"
        if (! is_real_scalar (val) || val < 0)
          error ("hinfsyn: 'gmin' must be a real-valued, non-negative scalar");
        endif
        gmin = val;
      case "tolgam"    
        if (! is_real_scalar (val) || val < 0)
          error ("hinfsyn: 'tolgam' must be a real-valued, non-negative scalar");
        endif
        tolgam = val;
      case "actol"  
        if (! is_real_scalar (val) || val < 0)
          error ("hinfsyn: 'actol' must be a real-valued, non-negative scalar");
        endif
        actol = val;
      case "method"
        ## NOTE: I called this "method" because of the dark side,
        ##       maybe something like "type" would make more sense ...               
        if (strncmpi (val, "s", 1))
          method = "sub";   # sub-optimal
        elseif (strncmpi (val, "o", 1) || strncmpi (val, "ric", 1))
          method = "opt";   # optimal
        else
          error ("hinfsyn: invalid method '%s'", val);
        endif
      otherwise
        warning ("hinfsyn: invalid property name '%s' ignored", key);
    endswitch
  endfor

  [a, b, c, d, tsam] = ssdata (P);
  
  ## check assumption A1
  m = columns (b);
  p = rows (c);
  
  m1 = m - ncon;
  p1 = p - nmeas;
  
  if (! isstabilizable (P(:, m1+1:m)))
    error ("hinfsyn: (A, B2) must be stabilizable");
  endif
  
  if (! isdetectable (P(p1+1:p, :)))
    error ("hinfsyn: (C2, A) must be detectable");
  endif

  ## H-infinity synthesis
  switch (method)
    case "sub"              # sub-optimal controller
      if (isct (P))         # continuous-time plant
        [ak, bk, ck, dk, rcond] = __sl_sb10fd__ (a, b, c, d, ncon, nmeas, gmax);
      else                  # discrete-time plant
        [ak, bk, ck, dk, rcond] = __sl_sb10dd__ (a, b, c, d, ncon, nmeas, gmax);
      endif

    case "opt"              # optimal controller
      if (isct (P))         # continuous-time plant
        [ak, bk, ck, dk, ~, ~, ~, ~, ~, rcond] = __sl_sb10ad__ (a, b, c, d, ncon, nmeas, gmax, tolgam, -actol);
      else                  # discrete-time plant
        ## NOTE: check whether it is an alternative to compute the bilinear transformation
        ##       of P, use __sl_sb10ad__ for a continuous-time controller and then
        ##       discretize the controller.
        ## estimate gamma
        Pt = d2c (P, "tustin");
        [at, bt, ct, dt] = ssdata (Pt);
        [~, ~, ~, ~, ~, ~, ~, ~, gamma] = __sl_sb10ad__ (at, bt, ct, dt, ncon, nmeas, gmax, tolgam, -actol);
        ## gamma iteration - bisection method using __sl_sb10dd__
        gmax = 1.2*gamma;
        while (gmax > eps && (gmax - gmin)/gmax > tolgam)
          gmid = (gmax + gmin)/2;
          try
            [ak, bk, ck, dk, rcond] = __sl_sb10dd__ (a, b, c, d, ncon, nmeas, gmid);
            ## check for stability
            K = ss (ak, bk, ck, dk, tsam);
            N = lft (P, K);
            if (isstable (N, actol))
              gmax = norm (N, inf);
            else
              gmin = gmid;
            endif
          catch             # cannot find solution
            gmin = gmid;
          end_try_catch 
        endwhile
      endif
    
    otherwise
      error ("hinfsyn: this should never happen");
  endswitch
  
  ## controller
  K = ss (ak, bk, ck, dk, tsam);
  
  if (nargout > 1)
    N = lft (P, K);
    varargout{1} = N;
    if (nargout > 2)
      gamma = norm (N, inf);
      varargout{2} = gamma;
      if (nargout > 3)
        varargout{3} = struct ("gamma", gamma, "rcond", rcond);
      endif
    endif
  endif

endfunction


## sub-optimal controller, continuous-time case
%!shared M, M_exp
%! A = [-1.0  0.0  4.0  5.0 -3.0 -2.0
%!      -2.0  4.0 -7.0 -2.0  0.0  3.0
%!      -6.0  9.0 -5.0  0.0  2.0 -1.0
%!      -8.0  4.0  7.0 -1.0 -3.0  0.0
%!       2.0  5.0  8.0 -9.0  1.0 -4.0
%!       3.0 -5.0  8.0  0.0  2.0 -6.0];
%!
%! B = [-3.0 -4.0 -2.0  1.0  0.0
%!       2.0  0.0  1.0 -5.0  2.0
%!      -5.0 -7.0  0.0  7.0 -2.0
%!       4.0 -6.0  1.0  1.0 -2.0
%!      -3.0  9.0 -8.0  0.0  5.0
%!       1.0 -2.0  3.0 -6.0 -2.0];
%!
%! C = [ 1.0 -1.0  2.0 -4.0  0.0 -3.0
%!      -3.0  0.0  5.0 -1.0  1.0  1.0
%!      -7.0  5.0  0.0 -8.0  2.0 -2.0
%!       9.0 -3.0  4.0  0.0  3.0  7.0
%!       0.0  1.0 -2.0  1.0 -6.0 -2.0];
%!
%! D = [ 1.0 -2.0 -3.0  0.0  0.0
%!       0.0  4.0  0.0  1.0  0.0
%!       5.0 -3.0 -4.0  0.0  1.0
%!       0.0  1.0  0.0  1.0 -3.0
%!       0.0  0.0  1.0  7.0  1.0];
%!
%! P = ss (A, B, C, D);
%! K = hinfsyn (P, 2, 2, "method", "sub", "gmax", 15);
%! M = [K.A, K.B; K.C, K.D];
%!
%! KA = [ -2.8043  14.7367   4.6658   8.1596   0.0848   2.5290
%!         4.6609   3.2756  -3.5754  -2.8941   0.2393   8.2920
%!       -15.3127  23.5592  -7.1229   2.7599   5.9775  -2.0285
%!       -22.0691  16.4758  12.5523 -16.3602   4.4300  -3.3168
%!        30.6789  -3.9026  -1.3868  26.2357  -8.8267  10.4860
%!        -5.7429   0.0577  10.8216 -11.2275   1.5074 -10.7244];
%!
%! KB = [ -0.1581  -0.0793
%!        -0.9237  -0.5718
%!         0.7984   0.6627
%!         0.1145   0.1496
%!        -0.6743  -0.2376
%!         0.0196  -0.7598];
%!
%! KC = [ -0.2480  -0.1713  -0.0880   0.1534   0.5016  -0.0730
%!         2.8810  -0.3658   1.3007   0.3945   1.2244   2.5690];
%!
%! KD = [  0.0554   0.1334
%!        -0.3195   0.0333];
%!
%! M_exp = [KA, KB; KC, KD];
%!
%!assert (M, M_exp, 1e-4);


## sub-optimal controller, discrete-time case
%!shared M, M_exp
%! A = [-0.7  0.0  0.3  0.0 -0.5 -0.1
%!      -0.6  0.2 -0.4 -0.3  0.0  0.0
%!      -0.5  0.7 -0.1  0.0  0.0 -0.8
%!      -0.7  0.0  0.0 -0.5 -1.0  0.0
%!       0.0  0.3  0.6 -0.9  0.1 -0.4
%!       0.5 -0.8  0.0  0.0  0.2 -0.9];
%!
%! B = [-1.0 -2.0 -2.0  1.0  0.0
%!       1.0  0.0  1.0 -2.0  1.0
%!      -3.0 -4.0  0.0  2.0 -2.0
%!       1.0 -2.0  1.0  0.0 -1.0
%!       0.0  1.0 -2.0  0.0  3.0
%!       1.0  0.0  3.0 -1.0 -2.0];
%!
%! C = [ 1.0 -1.0  2.0 -2.0  0.0 -3.0
%!      -3.0  0.0  1.0 -1.0  1.0  0.0
%!       0.0  2.0  0.0 -4.0  0.0 -2.0
%!       1.0 -3.0  0.0  0.0  3.0  1.0
%!       0.0  1.0 -2.0  1.0  0.0 -2.0];
%!
%! D = [ 1.0 -1.0 -2.0  0.0  0.0
%!       0.0  1.0  0.0  1.0  0.0
%!       2.0 -1.0 -3.0  0.0  1.0
%!       0.0  1.0  0.0  1.0 -1.0
%!       0.0  0.0  1.0  2.0  1.0];
%!
%! P = ss (A, B, C, D, 1);  # value of sampling time doesn't matter
%! K = hinfsyn (P, 2, 2, "method", "sub", "gmax", 111.294);
%! M = [K.A, K.B; K.C, K.D];
%!
%! KA = [-18.0030  52.0376  26.0831  -0.4271 -40.9022  18.0857
%!        18.8203 -57.6244 -29.0938   0.5870  45.3309 -19.8644
%!       -26.5994  77.9693  39.0368  -1.4020 -60.1129  26.6910
%!       -21.4163  62.1719  30.7507  -0.9201 -48.6221  21.8351
%!        -0.8911   4.2787   2.3286  -0.2424  -3.0376   1.2169
%!        -5.3286  16.1955   8.4824  -0.2489 -12.2348   5.1590];
%!
%! KB = [ 16.9788  14.1648
%!       -18.9215 -15.6726
%!        25.2046  21.2848
%!        20.1122  16.8322
%!         1.4104   1.2040
%!         5.3181   4.5149];
%!
%! KC = [ -9.1941  27.5165  13.7364  -0.3639 -21.5983   9.6025
%!         3.6490 -10.6194  -5.2772   0.2432   8.1108  -3.6293];
%!
%! KD = [  9.0317   7.5348
%!        -3.4006  -2.8219];
%!
%! M_exp = [KA, KB; KC, KD];
%!
%!assert (M, M_exp, 1e-4);


## optimal controller, discrete-time case??? -- test for bisection method
%!shared M, M_exp, GAM_exp, GAM
%! A = [-0.7  0.0  0.3  0.0 -0.5 -0.1
%!      -0.6  0.2 -0.4 -0.3  0.0  0.0
%!      -0.5  0.7 -0.1  0.0  0.0 -0.8
%!      -0.7  0.0  0.0 -0.5 -1.0  0.0
%!       0.0  0.3  0.6 -0.9  0.1 -0.4
%!       0.5 -0.8  0.0  0.0  0.2 -0.9];
%!
%! B = [-1.0 -2.0 -2.0  1.0  0.0
%!       1.0  0.0  1.0 -2.0  1.0
%!      -3.0 -4.0  0.0  2.0 -2.0
%!       1.0 -2.0  1.0  0.0 -1.0
%!       0.0  1.0 -2.0  0.0  3.0
%!       1.0  0.0  3.0 -1.0 -2.0];
%!
%! C = [ 1.0 -1.0  2.0 -2.0  0.0 -3.0
%!      -3.0  0.0  1.0 -1.0  1.0  0.0
%!       0.0  2.0  0.0 -4.0  0.0 -2.0
%!       1.0 -3.0  0.0  0.0  3.0  1.0
%!       0.0  1.0 -2.0  1.0  0.0 -2.0];
%!
%! D = [ 1.0 -1.0 -2.0  0.0  0.0
%!       0.0  1.0  0.0  1.0  0.0
%!       2.0 -1.0 -3.0  0.0  1.0
%!       0.0  1.0  0.0  1.0 -1.0
%!       0.0  0.0  1.0  2.0  1.0];
%!
%! P = ss (A, B, C, D, 1);
%! [K, ~, GAM] = hinfsyn (P, 2, 2, "gmax", 1000, "tolgam", 1e-4);
%! M = [K.A, K.B; K.C, K.D];
%!
%! KA = [-18.0030  52.0376  26.0831  -0.4271 -40.9022  18.0857
%!        18.8203 -57.6244 -29.0938   0.5870  45.3309 -19.8644
%!       -26.5994  77.9693  39.0368  -1.4020 -60.1129  26.6910
%!       -21.4163  62.1719  30.7507  -0.9201 -48.6221  21.8351
%!        -0.8911   4.2787   2.3286  -0.2424  -3.0376   1.2169
%!        -5.3286  16.1955   8.4824  -0.2489 -12.2348   5.1590];
%!
%! KB = [ 16.9788  14.1648
%!       -18.9215 -15.6726
%!        25.2046  21.2848
%!        20.1122  16.8322
%!         1.4104   1.2040
%!         5.3181   4.5149];
%!
%! KC = [ -9.1941  27.5165  13.7364  -0.3639 -21.5983   9.6025
%!         3.6490 -10.6194  -5.2772   0.2432   8.1108  -3.6293];
%!
%! KD = [  9.0317   7.5348
%!        -3.4006  -2.8219];
%!
%! M_exp = [KA, KB; KC, KD];
%! GAM_exp = 111.294;
%!
%!assert (M, M_exp, 1e-1);
%!assert (GAM, GAM_exp, 1e-3);