/usr/share/octave/packages/control-3.0.0/hinfsyn.m is in octave-control 3.0.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 | ## Copyright (C) 2009-2015 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {[@var{K}, @var{N}, @var{gamma}, @var{info}] =} hinfsyn (@var{P}, @var{nmeas}, @var{ncon})
## @deftypefnx{Function File} {[@var{K}, @var{N}, @var{gamma}, @var{info}] =} hinfsyn (@var{P}, @var{nmeas}, @var{ncon}, @dots{})
## @deftypefnx{Function File} {[@var{K}, @var{N}, @var{gamma}, @var{info}] =} hinfsyn (@var{P}, @var{nmeas}, @var{ncon}, @var{opt}, @dots{})
## @deftypefnx{Function File} {[@var{K}, @var{N}, @var{gamma}, @var{info}] =} hinfsyn (@var{P}, @dots{})
## @deftypefnx{Function File} {[@var{K}, @var{N}, @var{gamma}, @var{info}] =} hinfsyn (@var{P}, @var{opt}, @dots{})
## H-infinity control synthesis for @acronym{LTI} plant.
##
## @strong{Inputs}
## @table @var
## @item P
## Generalized plant. Must be a proper/realizable @acronym{LTI} model.
## If @var{P} is constructed with @command{mktito} or @command{augw},
## arguments @var{nmeas} and @var{ncon} can be omitted.
## @item nmeas
## Number of measured outputs v. The last @var{nmeas} outputs of @var{P} are connected to the
## inputs of controller @var{K}. The remaining outputs z (indices 1 to p-nmeas) are used
## to calculate the H-infinity norm.
## @item ncon
## Number of controlled inputs u. The last @var{ncon} inputs of @var{P} are connected to the
## outputs of controller @var{K}. The remaining inputs w (indices 1 to m-ncon) are excited
## by a harmonic test signal.
## @item @dots{}
## Optional pairs of keys and values. @code{'key1', value1, 'key2', value2}.
## @item opt
## Optional struct with keys as field names.
## Struct @var{opt} can be created directly or
## by function @command{options}. @code{opt.key1 = value1, opt.key2 = value2}.
## @end table
##
## @strong{Outputs}
## @table @var
## @item K
## State-space model of the H-infinity (sub-)optimal controller.
## @item N
## State-space model of the lower LFT of @var{P} and @var{K}.
## @item info
## Structure containing additional information.
## @item info.gamma
## L-infinity norm of @var{N}.
## @item info.rcond
## Vector @var{rcond} contains estimates of the reciprocal condition
## numbers of the matrices which are to be inverted and
## estimates of the reciprocal condition numbers of the
## Riccati equations which have to be solved during the
## computation of the controller @var{K}. For details,
## see the description of the corresponding SLICOT routine.
## @end table
##
## @strong{Option Keys and Values}
## @table @var
## @item 'method'
## String specifying the desired kind of controller:
## @table @var
## @item 'optimal', 'opt', 'o'
## Compute optimal controller using gamma iteration.
## Default selection for compatibility reasons.
## @item 'suboptimal', 'sub', 's'
## Compute (sub-)optimal controller. For stability reasons,
## suboptimal controllers are to be preferred over optimal ones.
## @end table
## @item 'gmax'
## The maximum value of the H-infinity norm of @var{N}.
## It is assumed that @var{gmax} is sufficiently large
## so that the controller is admissible. Default value is 1e15.
## @item 'gmin'
## Initial lower bound for gamma iteration. Default value is 0.
## @var{gmin} is only meaningful for optimal discrete-time controllers.
## @item 'tolgam'
## Tolerance used for controlling the accuracy of @var{gamma}
## and its distance to the estimated minimal possible
## value of @var{gamma}. Default value is 0.01.
## If @var{tolgam} = 0, then a default value equal to @code{sqrt(eps)}
## is used, where @var{eps} is the relative machine precision.
## For suboptimal controllers, @var{tolgam} is ignored.
## @item 'actol'
## Upper bound for the poles of the closed-loop system @var{N}
## used for determining if it is stable.
## @var{actol} >= 0 for stable systems.
## For suboptimal controllers, @var{actol} is ignored.
## @end table
##
## @strong{Block Diagram}
## @example
## @group
##
## gamma = min||N(K)|| N = lft (P, K)
## K inf
##
## +--------+
## w ----->| |-----> z
## | P(s) |
## u +---->| |-----+ v
## | +--------+ |
## | |
## | +--------+ |
## +-----| K(s) |<----+
## +--------+
##
## +--------+
## w ----->| N(s) |-----> z
## +--------+
## @end group
## @end example
##
## @strong{Algorithm}@*
## Uses SLICOT SB10FD, SB10DD and SB10AD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
##
## @seealso{augw, mixsyn}
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: December 2009
## Version: 0.3
function [K, varargout] = hinfsyn (P, varargin)
## check input arguments
if (nargin == 0)
print_usage ();
endif
if (! isa (P, "lti"))
error ("hinfsyn: first argument must be an LTI system");
endif
if (nargin == 1 || (nargin > 1 && ! is_real_scalar (varargin{1}))) # hinfsyn (P, ...)
[nmeas, ncon] = __tito_dim__ (P, "hinfsyn");
elseif (nargin >= 3) # hinfsyn (P, nmeas, ncon, ...)
nmeas = varargin{1};
ncon = varargin{2};
varargin = varargin(3:end);
else
print_usage ();
endif
if (! is_real_scalar (nmeas))
error ("hinfsyn: second argument 'nmeas' invalid");
endif
if (! is_real_scalar (ncon))
error ("hinfsyn: third argument 'ncon' invalid");
endif
if (numel (varargin) > 0 && isstruct (varargin{1})) # hinfsyn (P, nmeas, ncon, opt, ...), hinfsyn (P, opt, ...)
varargin = horzcat (__opt2cell__ (varargin{1}), varargin(2:end));
endif
nkv = numel (varargin); # number of keys and values
if (rem (nkv, 2))
error ("hinfsyn: keys and values must come in pairs");
endif
## default arguments
gmax = 1e15;
gmin = 0;
tolgam = 0.01;
actol = eps; # tolerance for stability margin
method = "opt";
## handle keys and values
for k = 1 : 2 : nkv
key = lower (varargin{k});
val = varargin{k+1};
switch (key)
case "gmax"
if (! is_real_scalar (val) || val < 0)
error ("hinfsyn: 'gmax' must be a real-valued, non-negative scalar");
endif
gmax = val;
case "gmin"
if (! is_real_scalar (val) || val < 0)
error ("hinfsyn: 'gmin' must be a real-valued, non-negative scalar");
endif
gmin = val;
case "tolgam"
if (! is_real_scalar (val) || val < 0)
error ("hinfsyn: 'tolgam' must be a real-valued, non-negative scalar");
endif
tolgam = val;
case "actol"
if (! is_real_scalar (val) || val < 0)
error ("hinfsyn: 'actol' must be a real-valued, non-negative scalar");
endif
actol = val;
case "method"
## NOTE: I called this "method" because of the dark side,
## maybe something like "type" would make more sense ...
if (strncmpi (val, "s", 1))
method = "sub"; # sub-optimal
elseif (strncmpi (val, "o", 1) || strncmpi (val, "ric", 1))
method = "opt"; # optimal
else
error ("hinfsyn: invalid method '%s'", val);
endif
otherwise
warning ("hinfsyn: invalid property name '%s' ignored", key);
endswitch
endfor
[a, b, c, d, tsam] = ssdata (P);
## check assumption A1
m = columns (b);
p = rows (c);
m1 = m - ncon;
p1 = p - nmeas;
if (! isstabilizable (P(:, m1+1:m)))
error ("hinfsyn: (A, B2) must be stabilizable");
endif
if (! isdetectable (P(p1+1:p, :)))
error ("hinfsyn: (C2, A) must be detectable");
endif
## H-infinity synthesis
switch (method)
case "sub" # sub-optimal controller
if (isct (P)) # continuous-time plant
[ak, bk, ck, dk, rcond] = __sl_sb10fd__ (a, b, c, d, ncon, nmeas, gmax);
else # discrete-time plant
[ak, bk, ck, dk, rcond] = __sl_sb10dd__ (a, b, c, d, ncon, nmeas, gmax);
endif
case "opt" # optimal controller
if (isct (P)) # continuous-time plant
[ak, bk, ck, dk, ~, ~, ~, ~, ~, rcond] = __sl_sb10ad__ (a, b, c, d, ncon, nmeas, gmax, tolgam, -actol);
else # discrete-time plant
## NOTE: check whether it is an alternative to compute the bilinear transformation
## of P, use __sl_sb10ad__ for a continuous-time controller and then
## discretize the controller.
## estimate gamma
Pt = d2c (P, "tustin");
[at, bt, ct, dt] = ssdata (Pt);
[~, ~, ~, ~, ~, ~, ~, ~, gamma] = __sl_sb10ad__ (at, bt, ct, dt, ncon, nmeas, gmax, tolgam, -actol);
## gamma iteration - bisection method using __sl_sb10dd__
gmax = 1.2*gamma;
while (gmax > eps && (gmax - gmin)/gmax > tolgam)
gmid = (gmax + gmin)/2;
try
[ak, bk, ck, dk, rcond] = __sl_sb10dd__ (a, b, c, d, ncon, nmeas, gmid);
## check for stability
K = ss (ak, bk, ck, dk, tsam);
N = lft (P, K);
if (isstable (N, actol))
gmax = norm (N, inf);
else
gmin = gmid;
endif
catch # cannot find solution
gmin = gmid;
end_try_catch
endwhile
endif
otherwise
error ("hinfsyn: this should never happen");
endswitch
## controller
K = ss (ak, bk, ck, dk, tsam);
if (nargout > 1)
N = lft (P, K);
varargout{1} = N;
if (nargout > 2)
gamma = norm (N, inf);
varargout{2} = gamma;
if (nargout > 3)
varargout{3} = struct ("gamma", gamma, "rcond", rcond);
endif
endif
endif
endfunction
## sub-optimal controller, continuous-time case
%!shared M, M_exp
%! A = [-1.0 0.0 4.0 5.0 -3.0 -2.0
%! -2.0 4.0 -7.0 -2.0 0.0 3.0
%! -6.0 9.0 -5.0 0.0 2.0 -1.0
%! -8.0 4.0 7.0 -1.0 -3.0 0.0
%! 2.0 5.0 8.0 -9.0 1.0 -4.0
%! 3.0 -5.0 8.0 0.0 2.0 -6.0];
%!
%! B = [-3.0 -4.0 -2.0 1.0 0.0
%! 2.0 0.0 1.0 -5.0 2.0
%! -5.0 -7.0 0.0 7.0 -2.0
%! 4.0 -6.0 1.0 1.0 -2.0
%! -3.0 9.0 -8.0 0.0 5.0
%! 1.0 -2.0 3.0 -6.0 -2.0];
%!
%! C = [ 1.0 -1.0 2.0 -4.0 0.0 -3.0
%! -3.0 0.0 5.0 -1.0 1.0 1.0
%! -7.0 5.0 0.0 -8.0 2.0 -2.0
%! 9.0 -3.0 4.0 0.0 3.0 7.0
%! 0.0 1.0 -2.0 1.0 -6.0 -2.0];
%!
%! D = [ 1.0 -2.0 -3.0 0.0 0.0
%! 0.0 4.0 0.0 1.0 0.0
%! 5.0 -3.0 -4.0 0.0 1.0
%! 0.0 1.0 0.0 1.0 -3.0
%! 0.0 0.0 1.0 7.0 1.0];
%!
%! P = ss (A, B, C, D);
%! K = hinfsyn (P, 2, 2, "method", "sub", "gmax", 15);
%! M = [K.A, K.B; K.C, K.D];
%!
%! KA = [ -2.8043 14.7367 4.6658 8.1596 0.0848 2.5290
%! 4.6609 3.2756 -3.5754 -2.8941 0.2393 8.2920
%! -15.3127 23.5592 -7.1229 2.7599 5.9775 -2.0285
%! -22.0691 16.4758 12.5523 -16.3602 4.4300 -3.3168
%! 30.6789 -3.9026 -1.3868 26.2357 -8.8267 10.4860
%! -5.7429 0.0577 10.8216 -11.2275 1.5074 -10.7244];
%!
%! KB = [ -0.1581 -0.0793
%! -0.9237 -0.5718
%! 0.7984 0.6627
%! 0.1145 0.1496
%! -0.6743 -0.2376
%! 0.0196 -0.7598];
%!
%! KC = [ -0.2480 -0.1713 -0.0880 0.1534 0.5016 -0.0730
%! 2.8810 -0.3658 1.3007 0.3945 1.2244 2.5690];
%!
%! KD = [ 0.0554 0.1334
%! -0.3195 0.0333];
%!
%! M_exp = [KA, KB; KC, KD];
%!
%!assert (M, M_exp, 1e-4);
## sub-optimal controller, discrete-time case
%!shared M, M_exp
%! A = [-0.7 0.0 0.3 0.0 -0.5 -0.1
%! -0.6 0.2 -0.4 -0.3 0.0 0.0
%! -0.5 0.7 -0.1 0.0 0.0 -0.8
%! -0.7 0.0 0.0 -0.5 -1.0 0.0
%! 0.0 0.3 0.6 -0.9 0.1 -0.4
%! 0.5 -0.8 0.0 0.0 0.2 -0.9];
%!
%! B = [-1.0 -2.0 -2.0 1.0 0.0
%! 1.0 0.0 1.0 -2.0 1.0
%! -3.0 -4.0 0.0 2.0 -2.0
%! 1.0 -2.0 1.0 0.0 -1.0
%! 0.0 1.0 -2.0 0.0 3.0
%! 1.0 0.0 3.0 -1.0 -2.0];
%!
%! C = [ 1.0 -1.0 2.0 -2.0 0.0 -3.0
%! -3.0 0.0 1.0 -1.0 1.0 0.0
%! 0.0 2.0 0.0 -4.0 0.0 -2.0
%! 1.0 -3.0 0.0 0.0 3.0 1.0
%! 0.0 1.0 -2.0 1.0 0.0 -2.0];
%!
%! D = [ 1.0 -1.0 -2.0 0.0 0.0
%! 0.0 1.0 0.0 1.0 0.0
%! 2.0 -1.0 -3.0 0.0 1.0
%! 0.0 1.0 0.0 1.0 -1.0
%! 0.0 0.0 1.0 2.0 1.0];
%!
%! P = ss (A, B, C, D, 1); # value of sampling time doesn't matter
%! K = hinfsyn (P, 2, 2, "method", "sub", "gmax", 111.294);
%! M = [K.A, K.B; K.C, K.D];
%!
%! KA = [-18.0030 52.0376 26.0831 -0.4271 -40.9022 18.0857
%! 18.8203 -57.6244 -29.0938 0.5870 45.3309 -19.8644
%! -26.5994 77.9693 39.0368 -1.4020 -60.1129 26.6910
%! -21.4163 62.1719 30.7507 -0.9201 -48.6221 21.8351
%! -0.8911 4.2787 2.3286 -0.2424 -3.0376 1.2169
%! -5.3286 16.1955 8.4824 -0.2489 -12.2348 5.1590];
%!
%! KB = [ 16.9788 14.1648
%! -18.9215 -15.6726
%! 25.2046 21.2848
%! 20.1122 16.8322
%! 1.4104 1.2040
%! 5.3181 4.5149];
%!
%! KC = [ -9.1941 27.5165 13.7364 -0.3639 -21.5983 9.6025
%! 3.6490 -10.6194 -5.2772 0.2432 8.1108 -3.6293];
%!
%! KD = [ 9.0317 7.5348
%! -3.4006 -2.8219];
%!
%! M_exp = [KA, KB; KC, KD];
%!
%!assert (M, M_exp, 1e-4);
## optimal controller, discrete-time case??? -- test for bisection method
%!shared M, M_exp, GAM_exp, GAM
%! A = [-0.7 0.0 0.3 0.0 -0.5 -0.1
%! -0.6 0.2 -0.4 -0.3 0.0 0.0
%! -0.5 0.7 -0.1 0.0 0.0 -0.8
%! -0.7 0.0 0.0 -0.5 -1.0 0.0
%! 0.0 0.3 0.6 -0.9 0.1 -0.4
%! 0.5 -0.8 0.0 0.0 0.2 -0.9];
%!
%! B = [-1.0 -2.0 -2.0 1.0 0.0
%! 1.0 0.0 1.0 -2.0 1.0
%! -3.0 -4.0 0.0 2.0 -2.0
%! 1.0 -2.0 1.0 0.0 -1.0
%! 0.0 1.0 -2.0 0.0 3.0
%! 1.0 0.0 3.0 -1.0 -2.0];
%!
%! C = [ 1.0 -1.0 2.0 -2.0 0.0 -3.0
%! -3.0 0.0 1.0 -1.0 1.0 0.0
%! 0.0 2.0 0.0 -4.0 0.0 -2.0
%! 1.0 -3.0 0.0 0.0 3.0 1.0
%! 0.0 1.0 -2.0 1.0 0.0 -2.0];
%!
%! D = [ 1.0 -1.0 -2.0 0.0 0.0
%! 0.0 1.0 0.0 1.0 0.0
%! 2.0 -1.0 -3.0 0.0 1.0
%! 0.0 1.0 0.0 1.0 -1.0
%! 0.0 0.0 1.0 2.0 1.0];
%!
%! P = ss (A, B, C, D, 1);
%! [K, ~, GAM] = hinfsyn (P, 2, 2, "gmax", 1000, "tolgam", 1e-4);
%! M = [K.A, K.B; K.C, K.D];
%!
%! KA = [-18.0030 52.0376 26.0831 -0.4271 -40.9022 18.0857
%! 18.8203 -57.6244 -29.0938 0.5870 45.3309 -19.8644
%! -26.5994 77.9693 39.0368 -1.4020 -60.1129 26.6910
%! -21.4163 62.1719 30.7507 -0.9201 -48.6221 21.8351
%! -0.8911 4.2787 2.3286 -0.2424 -3.0376 1.2169
%! -5.3286 16.1955 8.4824 -0.2489 -12.2348 5.1590];
%!
%! KB = [ 16.9788 14.1648
%! -18.9215 -15.6726
%! 25.2046 21.2848
%! 20.1122 16.8322
%! 1.4104 1.2040
%! 5.3181 4.5149];
%!
%! KC = [ -9.1941 27.5165 13.7364 -0.3639 -21.5983 9.6025
%! 3.6490 -10.6194 -5.2772 0.2432 8.1108 -3.6293];
%!
%! KD = [ 9.0317 7.5348
%! -3.4006 -2.8219];
%!
%! M_exp = [KA, KB; KC, KD];
%! GAM_exp = 111.294;
%!
%!assert (M, M_exp, 1e-1);
%!assert (GAM, GAM_exp, 1e-3);
|