This file is indexed.

/usr/share/octave/packages/control-3.0.0/isstabilizable.m is in octave-control 3.0.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
## Copyright (C) 2009-2015   Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{bool} =} isstabilizable (@var{sys})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{sys}, @var{tol})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b}, @var{e})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b}, @var{[]}, @var{tol})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b}, @var{e}, @var{tol})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b}, @var{[]}, @var{[]}, @var{dflg})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b}, @var{e}, @var{[]}, @var{dflg})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b}, @var{[]}, @var{tol}, @var{dflg})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b}, @var{e}, @var{tol}, @var{dflg})
## Logical check for system stabilizability.
## All unstable modes must be controllable or all uncontrollable states must be stable.
##
## @strong{Inputs}
## @table @var
## @item sys
## @acronym{LTI} system.  If @var{sys} is not a state-space system, it is converted to
## a minimal state-space realization, so beware of pole-zero cancellations
## which may lead to wrong results!
## @item a
## State transition matrix.
## @item b
## Input matrix.
## @item e
## Descriptor matrix.
## If @var{e} is empty @code{[]} or not specified, an identity matrix is assumed.
## @item tol
## Optional tolerance for stability.  Default value is 0.
## @item dflg = 0
## Matrices (@var{a}, @var{b}) are part of a continuous-time system.  Default Value.
## @item dflg = 1
## Matrices (@var{a}, @var{b}) are part of a discrete-time system.
## @end table
##
## @strong{Outputs}
## @table @var
## @item bool = 0
## System is not stabilizable.
## @item bool = 1
## System is stabilizable.
## @end table
##
## @strong{Algorithm}@*
## Uses SLICOT AB01OD and TG01HD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
## @example
## @group
## * Calculate staircase form (SLICOT AB01OD)
## * Extract unobservable part of state transition matrix
## * Calculate eigenvalues of unobservable part
## * Check whether
##   real (ev) < -tol*(1 + abs (ev))   continuous-time
##   abs (ev) < 1 - tol                discrete-time
## @end group
## @end example
## @seealso{isdetectable, isstable, isctrb, isobsv}
## @end deftypefn

## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: October 2009
## Version: 0.5

function bool = isstabilizable (a, b = [], e = [], tol = [], dflg = 0)

  if (nargin < 1 || nargin > 5)
    print_usage ();
  elseif (isa (a, "lti"))  # isstabilizable (sys), isstabilizable (sys, tol)
    if (nargin > 2)
      print_usage ();
    endif
    if (! isa (a, "ss"))
      warning ("isstabilizable: converting to minimal state-space realization");
    endif
    tol = b;
    dflg = ! isct (a);
    [a, b, c, d, e] = dssdata (a, []);
  elseif (nargin == 1)     # isstabilizable (a, b, ...)
    print_usage ();
  elseif (! is_real_square_matrix (a) || rows (a) != rows (b))
    error ("isstabilizable: a must be square and conformal to b");
  elseif (! isempty (e) && (! is_real_square_matrix (e) || ! size_equal (a, e)))
    error ("isstabilizable: e must be square and conformal to a");
  endif

  if (isempty (tol))
    tol = 0;               # default tolerance
  elseif (! is_real_scalar (tol))
    error ("isstabilizable: tol must be a real scalar");
  endif

  if (isempty (e))
    ## controllability staircase form
    [ac, ~, ~, ncont] = __sl_ab01od__ (a, b, tol);

    ## extract uncontrollable part of staircase form
    uncont_idx = ncont+1 : rows (a);
    auncont = ac(uncont_idx, uncont_idx);

    ## calculate poles of uncontrollable part
    pol = eig (auncont);
  else
    ## controllability staircase form - output matrix c has no influence
    [ac, ec, ~, ~, ~, ~, ncont] = __sl_tg01hd__ (a, e, b, zeros (1, columns (a)), tol);

    ## extract uncontrollable part of staircase form
    uncont_idx = ncont+1 : rows (a);
    auncont = ac(uncont_idx, uncont_idx);
    euncont = ec(uncont_idx, uncont_idx);

    ## calculate poles of uncontrollable part
    pol = eig (auncont, euncont);
    
    ## remove infinite poles
    tolinf = norm ([auncont, euncont], 2);
    idx = find (abs (pol) < tolinf/eps);
    pol = pol(idx);
  endif

  ## check whether uncontrollable poles are stable
  bool = __is_stable__ (pol, ! dflg, tol);

endfunction