/usr/share/octave/packages/control-3.0.0/isstabilizable.m is in octave-control 3.0.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | ## Copyright (C) 2009-2015 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{bool} =} isstabilizable (@var{sys})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{sys}, @var{tol})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b}, @var{e})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b}, @var{[]}, @var{tol})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b}, @var{e}, @var{tol})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b}, @var{[]}, @var{[]}, @var{dflg})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b}, @var{e}, @var{[]}, @var{dflg})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b}, @var{[]}, @var{tol}, @var{dflg})
## @deftypefnx {Function File} {@var{bool} =} isstabilizable (@var{a}, @var{b}, @var{e}, @var{tol}, @var{dflg})
## Logical check for system stabilizability.
## All unstable modes must be controllable or all uncontrollable states must be stable.
##
## @strong{Inputs}
## @table @var
## @item sys
## @acronym{LTI} system. If @var{sys} is not a state-space system, it is converted to
## a minimal state-space realization, so beware of pole-zero cancellations
## which may lead to wrong results!
## @item a
## State transition matrix.
## @item b
## Input matrix.
## @item e
## Descriptor matrix.
## If @var{e} is empty @code{[]} or not specified, an identity matrix is assumed.
## @item tol
## Optional tolerance for stability. Default value is 0.
## @item dflg = 0
## Matrices (@var{a}, @var{b}) are part of a continuous-time system. Default Value.
## @item dflg = 1
## Matrices (@var{a}, @var{b}) are part of a discrete-time system.
## @end table
##
## @strong{Outputs}
## @table @var
## @item bool = 0
## System is not stabilizable.
## @item bool = 1
## System is stabilizable.
## @end table
##
## @strong{Algorithm}@*
## Uses SLICOT AB01OD and TG01HD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
## @example
## @group
## * Calculate staircase form (SLICOT AB01OD)
## * Extract unobservable part of state transition matrix
## * Calculate eigenvalues of unobservable part
## * Check whether
## real (ev) < -tol*(1 + abs (ev)) continuous-time
## abs (ev) < 1 - tol discrete-time
## @end group
## @end example
## @seealso{isdetectable, isstable, isctrb, isobsv}
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: October 2009
## Version: 0.5
function bool = isstabilizable (a, b = [], e = [], tol = [], dflg = 0)
if (nargin < 1 || nargin > 5)
print_usage ();
elseif (isa (a, "lti")) # isstabilizable (sys), isstabilizable (sys, tol)
if (nargin > 2)
print_usage ();
endif
if (! isa (a, "ss"))
warning ("isstabilizable: converting to minimal state-space realization");
endif
tol = b;
dflg = ! isct (a);
[a, b, c, d, e] = dssdata (a, []);
elseif (nargin == 1) # isstabilizable (a, b, ...)
print_usage ();
elseif (! is_real_square_matrix (a) || rows (a) != rows (b))
error ("isstabilizable: a must be square and conformal to b");
elseif (! isempty (e) && (! is_real_square_matrix (e) || ! size_equal (a, e)))
error ("isstabilizable: e must be square and conformal to a");
endif
if (isempty (tol))
tol = 0; # default tolerance
elseif (! is_real_scalar (tol))
error ("isstabilizable: tol must be a real scalar");
endif
if (isempty (e))
## controllability staircase form
[ac, ~, ~, ncont] = __sl_ab01od__ (a, b, tol);
## extract uncontrollable part of staircase form
uncont_idx = ncont+1 : rows (a);
auncont = ac(uncont_idx, uncont_idx);
## calculate poles of uncontrollable part
pol = eig (auncont);
else
## controllability staircase form - output matrix c has no influence
[ac, ec, ~, ~, ~, ~, ncont] = __sl_tg01hd__ (a, e, b, zeros (1, columns (a)), tol);
## extract uncontrollable part of staircase form
uncont_idx = ncont+1 : rows (a);
auncont = ac(uncont_idx, uncont_idx);
euncont = ec(uncont_idx, uncont_idx);
## calculate poles of uncontrollable part
pol = eig (auncont, euncont);
## remove infinite poles
tolinf = norm ([auncont, euncont], 2);
idx = find (abs (pol) < tolinf/eps);
pol = pol(idx);
endif
## check whether uncontrollable poles are stable
bool = __is_stable__ (pol, ! dflg, tol);
endfunction
|