This file is indexed.

/usr/share/octave/packages/control-3.0.0/lyap.m is in octave-control 3.0.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
## Copyright (C) 2009-2015   Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {@var{x} =} lyap (@var{a}, @var{b})
## @deftypefnx{Function File} {@var{x} =} lyap (@var{a}, @var{b}, @var{c})
## @deftypefnx{Function File} {@var{x} =} lyap (@var{a}, @var{b}, @var{[]}, @var{e})
## Solve continuous-time Lyapunov or Sylvester equations.
##
## @strong{Equations}
## @example
## @group
## AX + XA' + B = 0      (Lyapunov Equation)
##
## AX + XB + C = 0       (Sylvester Equation)
##
## AXE' + EXA' + B = 0   (Generalized Lyapunov Equation)
## @end group
## @end example
##
## @strong{Algorithm}@*
## Uses SLICOT SB03MD, SB04MD and SG03AD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
##
## @seealso{lyapchol, dlyap, dlyapchol}
## @end deftypefn

## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: January 2010
## Version: 0.2.1

function [x, scale] = lyap (a, b, c, e)

  scale = 1;

  switch (nargin)
    case 2                                      # Lyapunov equation
  
      if (! is_real_square_matrix (a, b))
        ## error ("lyap: a, b must be real and square");
        error ("lyap: %s, %s must be real and square", ...
                inputname (1), inputname (2));
      endif
  
      if (rows (a) != rows (b))
        ## error ("lyap: a, b must have the same number of rows");
        error ("lyap: %s, %s must have the same number of rows", ...
                inputname (1), inputname (2));

      endif

      [x, scale] = __sl_sb03md__ (a, -b, false);     # AX + XA' = -B

      ## x /= scale;                            # 0 < scale <= 1
    
    case 3                                      # Sylvester equation
    
      if (! is_real_square_matrix (a, b))
        ## error ("lyap: a, b must be real and square");
        error ("lyap: %s, %s must be real and square", ...
                inputname (1), inputname (2));
      endif

      if (! is_real_matrix (c) || rows (c) != rows (a) || columns (c) != columns (b))
        ## error ("lyap: c must be a real (%dx%d) matrix", rows (a), columns (b));
        error ("lyap: %s must be a real (%dx%d) matrix", ...
                rows (a), columns (b), inputname (3));
      endif

      x = __sl_sb04md__ (a, b, -c);  # AX + XB = -C

    case 4                                      # generalized Lyapunov equation
    
      if (! isempty (c))
        print_usage ();
      endif
      
      if (! is_real_square_matrix (a, b, e))
        ## error ("lyap: a, b, e must be real and square");
        error ("lyap: %s, %s, %s must be real and square", ...
                inputname (1), inputname (2), inputname (4));
      endif
      
      if (rows (b) != rows (a) || rows (e) != rows (a))
        ## error ("lyap: a, b, e must have the same number of rows");
        error ("lyap: %s, %s, %s must have the same number of rows", ...
                inputname (1), inputname (2), inputname (4));
      endif
      
      if (! issymmetric (b))
        ## error ("lyap: b must be symmetric");
        error ("lyap: %s must be symmetric", ...
                inputname (2));
      endif

      [x, scale] = __sl_sg03ad__ (a, e, -b, false);  # AXE' + EXA' = -B
      
      ## x /= scale;                            # 0 < scale <= 1

    otherwise
      print_usage ();

  endswitch

  if (scale < 1)
    warning ("lyap: solution scaled by %g to prevent overflow", scale);
  endif

endfunction


## Lyapunov
%!shared X, X_exp
%! A = [1, 2; -3, -4];
%! Q = [3, 1; 1, 1];
%! X = lyap (A, Q);
%! X_exp = [ 6.1667, -3.8333;
%!          -3.8333,  3.0000];
%!assert (X, X_exp, 1e-4);

## Sylvester
%!shared X, X_exp
%! A = [2.0   1.0   3.0
%!      0.0   2.0   1.0
%!      6.0   1.0   2.0];
%!
%! B = [2.0   1.0
%!      1.0   6.0];
%!
%! C = [2.0   1.0
%!      1.0   4.0
%!      0.0   5.0];
%!
%! X = lyap (A, B, -C);
%!
%! X_exp = [-2.7685   0.5498
%!          -1.0531   0.6865
%!           4.5257  -0.4389];
%!
%!assert (X, X_exp, 1e-4);

## Generalized Lyapunov
%!shared X, X_exp
%! A = [  3.0     1.0     1.0
%!        1.0     3.0     0.0
%!        1.0     0.0     2.0];
%!
%! E = [  1.0     3.0     0.0
%!        3.0     2.0     1.0
%!        1.0     0.0     1.0];
%!
%! B = [-64.0   -73.0   -28.0
%!      -73.0   -70.0   -25.0
%!      -28.0   -25.0   -18.0];
%!
%! X = lyap (A.', -B, [], E.');
%!
%! X_exp = [-2.0000  -1.0000   0.0000
%!          -1.0000  -3.0000  -1.0000
%!           0.0000  -1.0000  -3.0000];
%!
%!assert (X, X_exp, 1e-4);