/usr/share/octave/packages/control-3.0.0/mixsyn.m is in octave-control 3.0.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | ## Copyright (C) 2009-2015 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {[@var{K}, @var{N}, @var{gamma}, @var{info}] =} mixsyn (@var{G}, @var{W1}, @var{W2}, @var{W3}, @dots{})
## Solve stacked S/KS/T H-infinity problem.
## Mixed-sensitivity is the name given to transfer function shaping problems in which
## the sensitivity function
## @iftex
## @tex
## $ S = (I + G K)^{-1} $
## @end tex
## @end iftex
## @ifnottex
## @example
## -1
## S = (I + G K)
## @end example
## @end ifnottex
## is shaped along with one or more other closed-loop transfer functions such as @var{K S}
## or the complementary sensitivity function
## @iftex
## @tex
## $ T = I - S = (I + G K)^{-1} G K $
## @end tex
## @end iftex
## @ifnottex
## @example
## -1
## T = I - S = (I + G K)
## @end example
## @end ifnottex
## in a typical one degree-of-freedom configuration, where @var{G} denotes the plant and
## @var{K} the (sub-)optimal controller to be found. The shaping of multivariable
## transfer functions is based on the idea that a satisfactory definition of gain
## (range of gain) for a matrix transfer function is given by the singular values
## @iftex
## @tex
## $\\sigma$
## @end tex
## @end iftex
## @ifnottex
##
## @end ifnottex
## of the transfer function. Hence the classical loop-shaping ideas of feedback design
## can be generalized to multivariable systems. In addition to the requirement that
## @var{K} stabilizes @var{G}, the closed-loop objectives are as follows [1]:
## @enumerate
## @item For @emph{disturbance rejection} make
## @iftex
## @tex
## $\\overline{\\sigma}(S)$
## @end tex
## @end iftex
## @ifnottex
##
## @end ifnottex
## small.
## @item For @emph{noise attenuation} make
## @iftex
## @tex
## $\\overline{\\sigma}(T)$
## @end tex
## @end iftex
## @ifnottex
##
## @end ifnottex
## small.
## @item For @emph{reference tracking} make
## @iftex
## @tex
## $\\overline{\\sigma}(T) \\approx \\underline{\\sigma}(T) \\approx 1$.
## @end tex
## @end iftex
## @ifnottex
##
## @end ifnottex
## @item For @emph{input usage (control energy) reduction} make
## @iftex
## @tex
## $\\overline{\\sigma}(K S)$
## @end tex
## @end iftex
## @ifnottex
##
## @end ifnottex
## small.
## @item For @emph{robust stability} in the presence of an additive perturbation
## @iftex
## @tex
## $G_p = G + \\Delta$,
## @end tex
## @end iftex
## @ifnottex
##
## @end ifnottex
## make
## @iftex
## @tex
## $\\overline{\\sigma}(K S)$
## @end tex
## @end iftex
## @ifnottex
##
## @end ifnottex
## small.
## @item For @emph{robust stability} in the presence of a multiplicative output perturbation
## @iftex
## @tex
## $G_p = (I + \\Delta) G$,
## @end tex
## @end iftex
## @ifnottex
##
## @end ifnottex
## make
## @iftex
## @tex
## $\\overline{\\sigma}(T)$
## @end tex
## @end iftex
## @ifnottex
##
## @end ifnottex
## small.
## @end enumerate
## In order to find a robust controller for the so-called stacked
## @iftex
## @tex
## $S/KS/T \\ H_{\\infty}$
## @end tex
## @end iftex
## @ifnottex
## S/KS/T H-infinity
## @end ifnottex
## problem, the user function @command{mixsyn} minimizes the following criterion
## @iftex
## @tex
## $$ \\underset{K}{\\min} || N(K) ||_{\\infty}, \\quad N = | W_1 S; \\ W_2 K S; \\ W_3 T |$$
## @end tex
## @end iftex
## @ifnottex
## @example
## | W1 S |
## min || N(K) || N = | W2 K S |
## K oo | W3 T |
## @end example
## @end ifnottex
## @code{[K, N] = mixsyn (G, W1, W2, W3)}.
## The user-defined weighting functions @var{W1}, @var{W2} and @var{W3} bound the largest
## singular values of the closed-loop transfer functions @var{S} (for performance),
## @var{K S} (to penalize large inputs) and @var{T} (for robustness and to avoid
## sensitivity to noise), respectively [1].
## A few points are to be considered when choosing the weights.
## The weigths @var{Wi} must all be proper and stable. Therefore if one wishes,
## for example, to minimize @var{S} at low frequencies by a weighting @var{W1} including
## integral action,
## @iftex
## @tex
## ${1 \\over s}$
## @end tex
## @end iftex
## @ifnottex
## @example
## 1
## -
## s
## @end example
## @end ifnottex
## needs to be approximated by
## @iftex
## @tex
## ${1 \\over s + \\epsilon}$, where $\\epsilon \\ll 1$.
## @end tex
## @end iftex
## @ifnottex
## @example
## 1
## ----- where e << 1.
## s + e
## @end example
## @end ifnottex
## Similarly one might be interested in weighting @var{K S} with a non-proper weight
## @var{W2} to ensure that @var{K} is small outside the system bandwidth.
## The trick here is to replace a non-proper term such as
## @iftex
## @tex
## $ 1 + \\tau_1 s $ by $ {1 + \\tau_1 s \\over 1 + \\tau_2 s} $, where
## @end tex
## @end iftex
## @ifnottex
## @example
## 1 + T1 s
## 1 + T1 s by --------, where T2 << T1.
## 1 + T2 s
## @end example
## @end ifnottex
## @iftex
## @tex
## $\\tau_2 \\ll \\tau_1$
## @end tex
## @end iftex
## [1, 2].
##
##
## @strong{Inputs}
## @table @var
## @item G
## @acronym{LTI} model of plant.
## @item W1
## @acronym{LTI} model of performance weight. Bounds the largest singular values of sensitivity @var{S}.
## Model must be empty @code{[]}, SISO or of appropriate size.
## @item W2
## @acronym{LTI} model to penalize large control inputs. Bounds the largest singular values of @var{KS}.
## Model must be empty @code{[]}, SISO or of appropriate size.
## @item W3
## @acronym{LTI} model of robustness and noise sensitivity weight. Bounds the largest singular values of
## complementary sensitivity @var{T}. Model must be empty @code{[]}, SISO or of appropriate size.
## @item @dots{}
## Optional arguments of @command{hinfsyn}. Type @command{help hinfsyn} for more information.
## @end table
##
## All inputs must be proper/realizable.
## Scalars, vectors and matrices are possible instead of @acronym{LTI} models.
##
## @strong{Outputs}
## @table @var
## @item K
## State-space model of the H-infinity (sub-)optimal controller.
## @item N
## State-space model of the lower LFT of @var{P} and @var{K}.
## @item info
## Structure containing additional information.
## @item info.gamma
## L-infinity norm of @var{N}.
## @item info.rcond
## Vector @var{rcond} contains estimates of the reciprocal condition
## numbers of the matrices which are to be inverted and
## estimates of the reciprocal condition numbers of the
## Riccati equations which have to be solved during the
## computation of the controller @var{K}. For details,
## see the description of the corresponding SLICOT routine.
## @end table
##
## @strong{Block Diagram}
## @example
## @group
##
## | W1 S |
## gamma = min||N(K)|| N = | W2 K S | = lft (P, K)
## K inf | W3 T |
## @end group
## @end example
## @example
## @group
## +------+ z1
## +---------------------------------------->| W1 |----->
## | +------+
## | +------+ z2
## | +---------------------->| W2 |----->
## | | +------+
## r + e | +--------+ u | +--------+ y +------+ z3
## ----->(+)---+-->| K(s) |----+-->| G(s) |----+---->| W3 |----->
## ^ - +--------+ +--------+ | +------+
## | |
## +----------------------------------------+
## @end group
## @end example
## @example
## @group
## +--------+
## | |-----> z1 (p1x1) z1 = W1 e
## r (px1) ----->| P(s) |-----> z2 (p2x1) z2 = W2 u
## | |-----> z3 (p3x1) z3 = W3 y
## u (mx1) ----->| |-----> e (px1) e = r - y
## +--------+
## @end group
## @end example
## @example
## @group
## +--------+
## r ----->| |-----> z
## | P(s) |
## u +---->| |-----+ e
## | +--------+ |
## | |
## | +--------+ |
## +-----| K(s) |<----+
## +--------+
## @end group
## @end example
## @example
## @group
## +--------+
## r ----->| N(s) |-----> z
## +--------+
## @end group
## @end example
## @example
## @group
## Extended Plant: P = augw (G, W1, W2, W3)
## Controller: K = mixsyn (G, W1, W2, W3)
## Entire System: N = lft (P, K)
## Open Loop: L = G * K
## Closed Loop: T = feedback (L)
## @end group
## @end example
##
## @strong{Algorithm}@*
## Relies on functions @command{augw} and @command{hinfsyn},
## which use SLICOT SB10FD, SB10DD and SB10AD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
##
## @strong{References}@*
## [1] Skogestad, S. and Postlethwaite I. (2005)
## @cite{Multivariable Feedback Control: Analysis and Design:
## Second Edition}. Wiley, Chichester, England.@*
## [2] Meinsma, G. (1995)
## @cite{Unstable and nonproper weights in H-infinity control}
## Automatica, Vol. 31, No. 11, pp. 1655-1658
##
## @seealso{hinfsyn, augw}
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: December 2009
## Version: 0.2
function [K, N, gamma, info] = mixsyn (G, W1 = [], W2 = [], W3 = [], varargin)
if (nargin == 0)
print_usage ();
endif
[p, m] = size (G);
P = augw (G, W1, W2, W3);
[K, N, gamma, info] = hinfsyn (P, p, m, varargin{:});
endfunction
|