This file is indexed.

/usr/share/octave/packages/control-3.0.0/mktito.m is in octave-control 3.0.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
## Copyright (C) 2009-2015   Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {@var{P} =} mktito (@var{P}, @var{nmeas}, @var{ncon})
## Partition @acronym{LTI} plant @var{P} for robust controller synthesis.
## If a plant is partitioned this way, one can omit the inputs @var{nmeas}
## and @var{ncon} when calling the functions @command{hinfsyn} and @command{h2syn}.
##
## @strong{Inputs}
## @table @var
## @item P
## Generalized plant.
## @item nmeas
## Number of measured outputs v.  The last @var{nmeas} outputs of @var{P} are connected to the
## inputs of controller @var{K}.  The remaining outputs z (indices 1 to p-nmeas) are used
## to calculate the H-2/H-infinity norm.
## @item ncon
## Number of controlled inputs u.  The last @var{ncon} inputs of @var{P} are connected to the
## outputs of controller @var{K}.  The remaining inputs w (indices 1 to m-ncon) are excited
## by a harmonic test signal.
## @end table
##
## @strong{Outputs}
## @table @var
## @item P
## Partitioned plant.  The input/output groups and names are overwritten with designations
## according to [1].
## @end table
##
## @strong{Block Diagram}
## @example
## @group
##
## min||N(K)||             N = lft (P, K)
##  K         norm
##
##                +--------+  
##        w ----->|        |-----> z
##                |  P(s)  |
##        u +---->|        |-----+ v
##          |     +--------+     |
##          |                    |
##          |     +--------+     |
##          +-----|  K(s)  |<----+
##                +--------+
##
##                +--------+      
##        w ----->|  N(s)  |-----> z
##                +--------+
## @end group
## @end example
##
## @strong{Reference}@*
## [1] Skogestad, S. and Postlethwaite, I. (2005)
## @cite{Multivariable Feedback Control: Analysis and Design:
## Second Edition}.  Wiley, Chichester, England.
##
## @end deftypefn

## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: October 2013
## Version: 0.1

function P = mktito (P, nmeas, ncon)

  if (nargin != 3)
    print_usage ();
  endif

  if (! isa (P, "lti"))
    error ("mktito: first argument must be an LTI model");
  endif
  
  [p, m] = size (P);
  
  if (! is_index (nmeas, p))
    error ("mktito: second argument 'nmeas' invalid");
  endif
  
  if (! is_index (ncon, m))
    error ("mktito: third argument 'ncon' invalid");
  endif
  
  outgroup = struct ("Z", 1:p-nmeas, "V", p-nmeas+1:p);
  outname = vertcat (strseq ("z", 1:p-nmeas), strseq ("v", 1:nmeas));
  
  ingroup = struct ("W", 1:m-ncon, "U", m-ncon+1:m);
  inname = vertcat (strseq ("w", 1:m-ncon), strseq ("u", 1:ncon));

  P = set (P, "outgroup", outgroup, "ingroup", ingroup, ...
              "outname", outname, "inname", inname);

endfunction


function bool = is_index (idx, s)

  ## (idx < s) and not (idx <= s) because we need at least one Z or W
  bool = is_real_scalar (idx) && fix (idx) == idx && idx > 0 && idx < s;

endfunction