/usr/share/octave/packages/control-3.0.0/optiPID.m is in octave-control 3.0.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | %% -*- texinfo -*-
%% Numerical optimization of a PID controller using an objective function.
%% The objective function is located in the file @command{optiPIDfun}.
%% Type @code{which optiPID} to locate, @code{edit optiPID} to open
%% and simply @code{optiPID} to run the example file.
%% In this example called @code{optiPID}, loosely based on [1], it is assumed
%% that the plant
%% @iftex
%% @tex
%% $$ P(s) = {1 \\over (s^{2} + s + 1)\\ (s + 1)^{4}} $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%% 1
%% P(s) = -----------------------
%% (s^2 + s + 1) (s + 1)^4
%% @end example
%% @end ifnottex
%% is controlled by a PID controller with second-order roll-off
%% @iftex
%% @tex
%% $$ C(s) = k_p \\ (1 + {1 \\over T_i \\ s} + T_d \\ s) \\ {1 \\over (\\tau \\ s + 1)^{2}} $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%% 1 1
%% C(s) = Kp (1 + ---- + Td s) -------------
%% Ti s (tau s + 1)^2
%% @end example
%% @end ifnottex
%% in the usual negative feedback structure
%% @iftex
%% @tex
%% $$ T(s) = {L(s) \\over 1 + L(s)} = {P(s) \\ C(s) \\over 1 + P(s) \\ C(s)} $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%% L(s) P(s) C(s)
%% T(s) = -------- = -------------
%% 1 + L(s) 1 + P(s) C(s)
%% @end example
%% @end ifnottex
%% The plant P(s) is of higher order but benign. The initial values for the
%% controller parameters
%% @iftex
%% @tex
%% $k_p$, $T_i$ and $T_d$
%% @end tex
%% @end iftex
%% @ifnottex
%% Kp, Ti and Td
%% @end ifnottex
%% are obtained by applying the
%% Astroem and Haegglund rules [2]. These values are to be improved using a
%% numerical optimization as shown below.
%% As with all numerical methods, this approach can never guarantee that a
%% proposed solution is a global minimum. Therefore, good initial guesses for
%% the parameters to be optimized are very important.
%% The Octave function @code{fminsearch} minimizes the objective function @var{J},
%% which is chosen to be
%% @iftex
%% @tex
%% $$ J(k_p, T_i, T_d) = \\mu_1 \\cdot \\int_0^{\\infty} \\! t \\ |e(t)| \\ dt \\ + \\ \\mu_2 \\cdot (|| y(t) ||_{\\infty} - 1) \\ + \\ \\mu_3 \\cdot ||S(jw)||_{\\infty} $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%% inf
%% J(Kp, Ti, Td) = mu1 INT t |e(t)| dt + mu2 (||y(t)|| - 1) + mu3 ||S(jw)||
%% 0 inf inf
%% @end example
%% @end ifnottex
%% This particular objective function penalizes the integral of time-weighted absolute error
%% @iftex
%% @tex
%% $$ ITAE = \\int_0^{\\infty} \\! t \\ |e(t)| \\ dt $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%% inf
%% ITAE = INT t |e(t)| dt
%% 0
%% @end example
%% @end ifnottex
%% and the maximum overshoot
%% @iftex
%% @tex
%% $$ y_{max} - 1 = || y(t) ||_{\\infty} - 1 $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%% y - 1 = ||y(t)|| - 1
%% max inf
%% @end example
%% @end ifnottex
%% to a unity reference step
%% @iftex
%% @tex
%% $r(t) = \\varepsilon (t)$
%% @end tex
%% @end iftex
%% in the time domain. In the frequency domain, the sensitivity
%% @iftex
%% @tex
%% $$ M_s = ||S(jw)||_{\\infty} $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%% Ms = ||S(jw)||
%% inf
%% @end example
%% @end ifnottex
%% is minimized for good robustness, where S(jw) denotes the @emph{sensitivity} transfer function
%% @iftex
%% @tex
%% $$ S(s) = {1 \\over 1 + L(s)} = {1 \\over 1 + P(s) \\ C(s)} $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%% 1 1
%% S(s) = -------- = -------------
%% 1 + L(s) 1 + P(s) C(s)
%% @end example
%% @end ifnottex
%% The constants
%% @iftex
%% @tex
%% $\\mu_1$, $\\mu_2$ and $\\mu_3$
%% @end tex
%% @end iftex
%% @ifnottex
%% mu1, mu2 and mu3
%% @end ifnottex
%% are @emph{relative weighting factors} or @guillemetleft{}tuning knobs@guillemetright{}
%% which reflect the importance of the different design goals. Varying these factors
%% corresponds to changing the emphasis from, say, high performance to good robustness.
%% The main advantage of this approach is the possibility to explore the tradeoffs of
%% the design problem in a systematic way.
%% In a first approach, all three design objectives are weigthed equally.
%% In subsequent iterations, the parameters
%% @iftex
%% @tex
%% $\\mu_1 = 1$, $\\mu_2 = 10$ and $\\mu_3 = 20$
%% @end tex
%% @end iftex
%% @ifnottex
%% mu1 = 1, mu2 = 10 and mu3 = 20
%% @end ifnottex
%% are found to yield satisfactory closed-loop performance. This controller results
%% in a system with virtually no overshoot and a phase margin of 64 degrees.
%%
%% @*@strong{References}@*
%% [1] Guzzella, L.
%% @cite{Analysis and Design of SISO Control Systems},
%% VDF Hochschulverlag, ETH Zurich, 2007@*
%% [2] Astroem, K. and Haegglund, T.
%% @cite{PID Controllers: Theory, Design and Tuning},
%% Second Edition,
%% Instrument Society of America, 1995
% ===============================================================================
% optiPID Lukas Reichlin July 2009
% ===============================================================================
% Numerical Optimization of an A/H PID Controller
% Required OCTAVE Packages: control
% Required MATLAB Toolboxes: Control, Optimization
% ===============================================================================
% Tabula Rasa
clear all, close all, clc;
% Global Variables
global P t dt mu_1 mu_2 mu_3
% Plant
numP = [1];
denP = conv ([1, 1, 1], [1, 4, 6, 4, 1]);
P = tf (numP, denP);
% Relative Weighting Factors: PLAY AROUND WITH THESE!
mu_1 = 1; % Minimize ITAE Criterion
mu_2 = 10; % Minimize Max Overshoot
mu_3 = 20; % Minimize Sensitivity Ms
% Simulation Settings: PLANT-DEPENDENT!
t_sim = 30; % Simulation Time [s]
dt = 0.05; % Sampling Time [s]
t = 0 : dt : t_sim; % Time Vector [s]
% A/H PID Controller: Ms = 2.0
[gamma, phi, w_gamma, w_phi] = margin (P);
ku = gamma;
Tu = 2*pi / w_gamma;
kappa = inv (dcgain (P));
disp ('optiPID: Astrom/Hagglund PID controller parameters:');
kp_AH = ku * 0.72 * exp ( -1.60 * kappa + 1.20 * kappa^2 )
Ti_AH = Tu * 0.59 * exp ( -1.30 * kappa + 0.38 * kappa^2 )
Td_AH = Tu * 0.15 * exp ( -1.40 * kappa + 0.56 * kappa^2 )
C_AH = optiPIDctrl (kp_AH, Ti_AH, Td_AH);
% Initial Values
C_par_0 = [kp_AH; Ti_AH; Td_AH];
% Optimization
warning ('optiPID: optimization starts, please be patient ...');
C_par_opt = fminsearch (@optiPIDfun, C_par_0);
% Optimized Controller
disp ('optiPID: optimized PID controller parameters:');
kp_opt = C_par_opt(1)
Ti_opt = C_par_opt(2)
Td_opt = C_par_opt(3)
C_opt = optiPIDctrl (kp_opt, Ti_opt, Td_opt);
% Open Loop
L_AH = P * C_AH;
L_opt = P * C_opt;
% Closed Loop
T_AH = feedback (L_AH, 1);
T_opt = feedback (L_opt, 1);
% A Posteriori Stability Check
disp ('optiPID: closed-loop stability check:');
st_AH = isstable (T_AH)
st_opt = isstable (T_opt)
% Stability Margins
disp ('optiPID: gain margin gamma [-] and phase margin phi [deg]:');
[gamma_AH, phi_AH] = margin (L_AH)
[gamma_opt, phi_opt] = margin (L_opt)
% Plot Step Response
figure (1)
step (T_AH, 'b', T_opt, 'r', t)
legend ('Astroem/Haegglund PID', 'Optimized PID', 'Location', 'SouthEast')
% ===============================================================================
|