This file is indexed.

/usr/share/octave/packages/control-3.0.0/optiPID.m is in octave-control 3.0.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
%% -*- texinfo -*-
%% Numerical optimization of a PID controller using an objective function.
%% The objective function is located in the file @command{optiPIDfun}.
%% Type @code{which optiPID} to locate, @code{edit optiPID} to open
%% and simply @code{optiPID} to run the example file.
%% In this example called @code{optiPID}, loosely based on [1], it is assumed
%% that the plant
%% @iftex
%% @tex
%% $$ P(s) = {1 \\over (s^{2} + s + 1)\\ (s + 1)^{4}} $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%%                   1
%% P(s) = -----------------------
%%        (s^2 + s + 1) (s + 1)^4 
%% @end example
%% @end ifnottex
%% is controlled by a PID controller with second-order roll-off
%% @iftex
%% @tex
%% $$ C(s) = k_p \\ (1 + {1 \\over T_i \\ s} + T_d \\ s) \\ {1 \\over (\\tau \\ s + 1)^{2}} $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%%                  1                1
%% C(s) = Kp (1 + ---- + Td s) -------------
%%                Ti s         (tau s + 1)^2
%% @end example
%% @end ifnottex
%% in the usual negative feedback structure
%% @iftex
%% @tex
%% $$ T(s) = {L(s) \\over 1 + L(s)} = {P(s) \\ C(s) \\over 1 + P(s) \\ C(s)} $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%%          L(s)       P(s) C(s)
%% T(s) = -------- = -------------
%%        1 + L(s)   1 + P(s) C(s)
%% @end example
%% @end ifnottex
%% The plant P(s) is of higher order but benign.  The initial values for the
%% controller parameters
%% @iftex
%% @tex
%% $k_p$, $T_i$ and $T_d$
%% @end tex
%% @end iftex
%% @ifnottex
%% Kp, Ti and Td
%% @end ifnottex
%% are obtained by applying the
%% Astroem and Haegglund rules [2].  These values are to be improved using a
%% numerical optimization as shown below.
%% As with all numerical methods, this approach can never guarantee that a
%% proposed solution is a global minimum.  Therefore, good initial guesses for
%% the parameters to be optimized are very important.
%% The Octave function @code{fminsearch} minimizes the objective function @var{J},
%% which is chosen to be
%% @iftex
%% @tex
%% $$ J(k_p, T_i, T_d) = \\mu_1 \\cdot \\int_0^{\\infty} \\! t \\ |e(t)| \\ dt \\ + \\ \\mu_2 \\cdot (|| y(t) ||_{\\infty} - 1) \\ + \\ \\mu_3 \\cdot ||S(jw)||_{\\infty} $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%%                     inf 
%% J(Kp, Ti, Td) = mu1 INT t |e(t)| dt  +  mu2 (||y(t)||    - 1)  +  mu3 ||S(jw)||
%%                      0                               inf                       inf
%% @end example
%% @end ifnottex
%% This particular objective function penalizes the integral of time-weighted absolute error
%% @iftex
%% @tex
%% $$ ITAE = \\int_0^{\\infty} \\! t \\ |e(t)| \\ dt $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%%        inf 
%% ITAE = INT t |e(t)| dt
%%         0             
%% @end example
%% @end ifnottex
%% and the maximum overshoot
%% @iftex
%% @tex
%% $$ y_{max} - 1 = || y(t) ||_{\\infty} - 1 $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%% y    - 1 = ||y(t)||    - 1
%%  max               inf
%% @end example
%% @end ifnottex
%% to a unity reference step
%% @iftex
%% @tex
%% $r(t) = \\varepsilon (t)$
%% @end tex
%% @end iftex
%% in the time domain. In the frequency domain, the sensitivity
%% @iftex
%% @tex
%% $$ M_s = ||S(jw)||_{\\infty} $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%% Ms = ||S(jw)||
%%               inf
%% @end example
%% @end ifnottex
%% is minimized for good robustness, where S(jw) denotes the @emph{sensitivity} transfer function
%% @iftex
%% @tex
%% $$ S(s) = {1 \\over 1 + L(s)} = {1 \\over 1 + P(s) \\ C(s)} $$
%% @end tex
%% @end iftex
%% @ifnottex
%% @example
%%            1            1
%% S(s) = -------- = -------------
%%        1 + L(s)   1 + P(s) C(s)
%% @end example
%% @end ifnottex
%% The constants
%% @iftex
%% @tex
%% $\\mu_1$, $\\mu_2$ and $\\mu_3$
%% @end tex
%% @end iftex
%% @ifnottex
%% mu1, mu2 and mu3
%% @end ifnottex
%% are @emph{relative weighting factors} or @guillemetleft{}tuning knobs@guillemetright{}
%% which reflect the importance of the different design goals. Varying these factors
%% corresponds to changing the emphasis from, say, high performance to good robustness.
%% The main advantage of this approach is the possibility to explore the tradeoffs of
%% the design problem in a systematic way.
%% In a first approach, all three design objectives are weigthed equally.
%% In subsequent iterations, the parameters
%% @iftex
%% @tex
%% $\\mu_1 = 1$, $\\mu_2 = 10$ and $\\mu_3 = 20$
%% @end tex
%% @end iftex
%% @ifnottex
%% mu1 = 1, mu2 = 10 and mu3 = 20
%% @end ifnottex
%% are found to yield satisfactory closed-loop performance.  This controller results
%% in a system with virtually no overshoot and a phase margin of 64 degrees.
%%
%% @*@strong{References}@*
%% [1] Guzzella, L.
%% @cite{Analysis and Design of SISO Control Systems},
%% VDF Hochschulverlag, ETH Zurich, 2007@*
%% [2] Astroem, K. and Haegglund, T.
%% @cite{PID Controllers: Theory, Design and Tuning},
%% Second Edition,
%% Instrument Society of America, 1995

% ===============================================================================
% optiPID                          Lukas Reichlin                       July 2009
% ===============================================================================
% Numerical Optimization of an A/H PID Controller
% Required OCTAVE Packages: control
% Required MATLAB Toolboxes: Control, Optimization
% ===============================================================================

% Tabula Rasa
clear all, close all, clc;

% Global Variables
global P t dt mu_1 mu_2 mu_3

% Plant
numP = [1];
denP = conv ([1, 1, 1], [1, 4, 6, 4, 1]);
P = tf (numP, denP);

% Relative Weighting Factors: PLAY AROUND WITH THESE!
mu_1 = 1;               % Minimize ITAE Criterion
mu_2 = 10;              % Minimize Max Overshoot
mu_3 = 20;              % Minimize Sensitivity Ms

% Simulation Settings: PLANT-DEPENDENT!
t_sim = 30;             % Simulation Time [s]
dt = 0.05;              % Sampling Time [s]
t = 0 : dt : t_sim;     % Time Vector [s]

% A/H PID Controller: Ms = 2.0
[gamma, phi, w_gamma, w_phi] = margin (P);

ku = gamma;
Tu = 2*pi / w_gamma;
kappa = inv (dcgain (P));

disp ('optiPID: Astrom/Hagglund PID controller parameters:');
kp_AH = ku * 0.72 * exp ( -1.60 * kappa  +  1.20 * kappa^2 )
Ti_AH = Tu * 0.59 * exp ( -1.30 * kappa  +  0.38 * kappa^2 )
Td_AH = Tu * 0.15 * exp ( -1.40 * kappa  +  0.56 * kappa^2 )

C_AH = optiPIDctrl (kp_AH, Ti_AH, Td_AH);

% Initial Values
C_par_0 = [kp_AH; Ti_AH; Td_AH];

% Optimization
warning ('optiPID: optimization starts, please be patient ...');
C_par_opt = fminsearch (@optiPIDfun, C_par_0);

% Optimized Controller
disp ('optiPID: optimized PID controller parameters:');
kp_opt = C_par_opt(1)
Ti_opt = C_par_opt(2)
Td_opt = C_par_opt(3)

C_opt = optiPIDctrl (kp_opt, Ti_opt, Td_opt);

% Open Loop
L_AH = P * C_AH;
L_opt = P * C_opt;

% Closed Loop
T_AH = feedback (L_AH, 1);
T_opt = feedback (L_opt, 1);

% A Posteriori Stability Check
disp ('optiPID: closed-loop stability check:');
st_AH = isstable (T_AH)
st_opt = isstable (T_opt)

% Stability Margins
disp ('optiPID: gain margin gamma [-] and phase margin phi [deg]:');
[gamma_AH, phi_AH] = margin (L_AH)
[gamma_opt, phi_opt] = margin (L_opt)

% Plot Step Response
figure (1)
step (T_AH, 'b', T_opt, 'r', t)
legend ('Astroem/Haegglund PID', 'Optimized PID', 'Location', 'SouthEast')

% ===============================================================================