/usr/share/octave/packages/control-3.0.0/place.m is in octave-control 3.0.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 | ## Copyright (C) 2009-2015 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{f} =} place (@var{sys}, @var{p})
## @deftypefnx {Function File} {@var{f} =} place (@var{a}, @var{b}, @var{p})
## @deftypefnx {Function File} {[@var{f}, @var{info}] =} place (@var{sys}, @var{p}, @var{alpha})
## @deftypefnx {Function File} {[@var{f}, @var{info}] =} place (@var{a}, @var{b}, @var{p}, @var{alpha})
## Pole assignment for a given matrix pair (@var{A},@var{B}) such that @code{p = eig (A-B*F)}.
## If parameter @var{alpha} is specified, poles with real parts (continuous-time)
## or moduli (discrete-time) below @var{alpha} are left untouched.
##
## @strong{Inputs}
## @table @var
## @item sys
## Continuous- or discrete-time @acronym{LTI} system.
## @item a
## State matrix (n-by-n) of a continuous-time system.
## @item b
## Input matrix (n-by-m) of a continuous-time system.
## @item p
## Desired eigenvalues of the closed-loop system state-matrix @var{A-B*F}.
## @code{length (p) <= rows (A)}.
## @item alpha
## Specifies the maximum admissible value, either for real
## parts or for moduli, of the eigenvalues of @var{A} which will
## not be modified by the eigenvalue assignment algorithm.
## @code{alpha >= 0} for discrete-time systems.
## @end table
##
## @strong{Outputs}
## @table @var
## @item f
## State feedback gain matrix.
## @item info
## Structure containing additional information.
## @item info.nfp
## The number of fixed poles, i.e. eigenvalues of @var{A} having
## real parts less than @var{alpha}, or moduli less than @var{alpha}.
## These eigenvalues are not modified by @command{place}.
## @item info.nap
## The number of assigned eigenvalues. @code{nap = n-nfp-nup}.
## @item info.nup
## The number of uncontrollable eigenvalues detected by the
## eigenvalue assignment algorithm.
## @item info.z
## The orthogonal matrix @var{z} reduces the closed-loop
## system state matrix @code{A + B*F} to upper real Schur form.
## Note the positive sign in @code{A + B*F}.
## @end table
##
## @strong{Note}
## @example
## Place is also suitable to design estimator gains:
## @group
## L = place (A.', C.', p).'
## L = place (sys.', p).' # useful for discrete-time systems
## @end group
## @end example
##
## @strong{Algorithm}@*
## Uses SLICOT SB01BD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
## @end deftypefn
## Special thanks to Peter Benner from TU Chemnitz for his advice.
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: December 2009
## Version: 0.5
function [f, info] = place (a, b, p = [], alpha = [], tol = [])
if (nargin < 2 || nargin > 5)
print_usage ();
endif
if (isa (a, "lti")) # place (sys, p), place (sys, p, alpha), place (sys, p, alpha, tol)
if (nargin > 4) # nargin < 2 already tested
print_usage ();
endif
tol = alpha;
alpha = p;
p = b;
sys = a;
[a, b] = ssdata (sys); # descriptor matrice e should be regular
discrete = ! isct (sys); # treat tsam = -2 as continuous system
else # place (a, b, p), place (a, b, p, alpha), place (a, b, p, alpha, tol)
if (nargin < 3) # nargin > 5 already tested
print_usage ();
endif
if (! is_real_square_matrix (a) || ! is_real_matrix (b) || rows (a) != rows (b))
error ("place: matrices a and b not conformal");
endif
discrete = 0; # assume continuous system
endif
if (! isnumeric (p) || ! isvector (p) || isempty (p)) # p could be complex
error ("place: p must be a vector");
endif
p = sort (reshape (p, [], 1)); # complex conjugate pairs must appear together
wr = real (p);
wi = imag (p);
n = rows (a); # number of states
np = length (p); # number of given eigenvalues
if (np > n)
error ("place: at most %d eigenvalues can be assigned for the given matrix a (%dx%d)",
n, n, n);
endif
if (isempty (alpha))
if (discrete)
alpha = 0;
else
alpha = - norm (a, inf);
endif
endif
if (isempty (tol))
tol = 0;
endif
[f, nfp, nap, nup, z] = __sl_sb01bd__ (a, b, wr, wi, discrete, alpha, tol);
f = -f; # A + B*F --> A - B*F
info = struct ("nfp", nfp, "nap", nap, "nup", nup, "z", z);
endfunction
## Test from "legacy" control package 1.0.*
%!shared A, B, C, P, Kexpected
%! A = [0, 1; 3, 2];
%! B = [0; 1];
%! C = [2, 1]; # C is needed for ss; it doesn't matter what the value of C is
%! P = [-1, -0.5];
%! Kexpected = [3.5, 3.5];
%!assert (place (ss (A, B, C), P), Kexpected, 2*eps);
%!assert (place (A, B, P), Kexpected, 2*eps);
## FIXME: Test from SLICOT example SB01BD fails with 4 eigenvalues in P
%!shared F, F_exp, ev_ol, ev_cl
%! A = [-6.8000 0.0000 -207.0000 0.0000
%! 1.0000 0.0000 0.0000 0.0000
%! 43.2000 0.0000 0.0000 -4.2000
%! 0.0000 0.0000 1.0000 0.0000];
%!
%! B = [ 5.6400 0.0000
%! 0.0000 0.0000
%! 0.0000 1.1800
%! 0.0000 0.0000];
%!
%! P = [-0.5000 + 0.1500i
%! -0.5000 - 0.1500i];
#%! -2.0000 + 0.0000i
#%! -0.4000 + 0.0000i];
%!
%! ALPHA = -0.4;
%! TOL = 1e-8;
%!
%! F = place (A, B, P, ALPHA, TOL);
%!
%! F_exp = - [-0.0876 -4.2138 0.0837 -18.1412
%! -0.0233 18.2483 -0.4259 -4.8120];
%!
%! ev_ol = sort (eig (A));
%! ev_cl = sort (eig (A - B*F));
%!
%!assert (F, F_exp, 1e-4);
%!assert (ev_ol(3:4), ev_cl(3:4), 1e-4);
|