This file is indexed.

/usr/share/octave/packages/control-3.0.0/place.m is in octave-control 3.0.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
## Copyright (C) 2009-2015   Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{f} =} place (@var{sys}, @var{p})
## @deftypefnx {Function File} {@var{f} =} place (@var{a}, @var{b}, @var{p})
## @deftypefnx {Function File} {[@var{f}, @var{info}] =} place (@var{sys}, @var{p}, @var{alpha})
## @deftypefnx {Function File} {[@var{f}, @var{info}] =} place (@var{a}, @var{b}, @var{p}, @var{alpha})
## Pole assignment for a given matrix pair (@var{A},@var{B}) such that @code{p = eig (A-B*F)}.
## If parameter @var{alpha} is specified, poles with real parts (continuous-time)
## or moduli (discrete-time) below @var{alpha} are left untouched.
##
## @strong{Inputs}
## @table @var
## @item sys
## Continuous- or discrete-time @acronym{LTI} system.
## @item a
## State matrix (n-by-n) of a continuous-time system.
## @item b
## Input matrix (n-by-m) of a continuous-time system.
## @item p
## Desired eigenvalues of the closed-loop system state-matrix @var{A-B*F}.
## @code{length (p) <= rows (A)}.
## @item alpha
## Specifies the maximum admissible value, either for real
## parts or for moduli, of the eigenvalues of @var{A} which will
## not be modified by the eigenvalue assignment algorithm.
## @code{alpha >= 0} for discrete-time systems.
## @end table
##
## @strong{Outputs}
## @table @var
## @item f
## State feedback gain matrix.
## @item info
## Structure containing additional information.
## @item info.nfp
## The number of fixed poles, i.e. eigenvalues of @var{A} having
## real parts less than @var{alpha}, or moduli less than @var{alpha}.
## These eigenvalues are not modified by @command{place}.
## @item info.nap
## The number of assigned eigenvalues.  @code{nap = n-nfp-nup}.
## @item info.nup
## The number of uncontrollable eigenvalues detected by the
## eigenvalue assignment algorithm.
## @item info.z
## The orthogonal matrix @var{z} reduces the closed-loop
## system state matrix @code{A + B*F} to upper real Schur form.
## Note the positive sign in @code{A + B*F}.
## @end table
##
## @strong{Note}
## @example
## Place is also suitable to design estimator gains:
## @group
## L = place (A.', C.', p).'
## L = place (sys.', p).'   # useful for discrete-time systems
## @end group
## @end example
##
## @strong{Algorithm}@*
## Uses SLICOT SB01BD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
## @end deftypefn

## Special thanks to Peter Benner from TU Chemnitz for his advice.
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: December 2009
## Version: 0.5

function [f, info] = place (a, b, p = [], alpha = [], tol = [])

  if (nargin < 2 || nargin > 5)
    print_usage ();
  endif

  if (isa (a, "lti"))              # place (sys, p), place (sys, p, alpha), place (sys, p, alpha, tol)
    if (nargin > 4)                # nargin < 2 already tested
      print_usage ();
    endif
    tol = alpha;
    alpha = p;
    p = b;
    sys = a;
    [a, b] = ssdata (sys);         # descriptor matrice e should be regular
    discrete = ! isct (sys);       # treat tsam = -2 as continuous system
  else                             # place (a, b, p), place (a, b, p, alpha), place (a, b, p, alpha, tol)
    if (nargin < 3)                # nargin > 5 already tested
      print_usage ();
    endif
    if (! is_real_square_matrix (a) || ! is_real_matrix (b) || rows (a) != rows (b))
      error ("place: matrices a and b not conformal");
    endif
    discrete = 0;                  # assume continuous system
  endif

  if (! isnumeric (p) || ! isvector (p) || isempty (p))  # p could be complex
    error ("place: p must be a vector");
  endif
  
  p = sort (reshape (p, [], 1));   # complex conjugate pairs must appear together
  wr = real (p);
  wi = imag (p);
  
  n = rows (a);                    # number of states
  np = length (p);                 # number of given eigenvalues
  
  if (np > n)
    error ("place: at most %d eigenvalues can be assigned for the given matrix a (%dx%d)",
            n, n, n);
  endif

  if (isempty (alpha))
    if (discrete)
      alpha = 0;
    else
      alpha = - norm (a, inf);
    endif
  endif
  
  if (isempty (tol))
    tol = 0;
  endif

  [f, nfp, nap, nup, z] = __sl_sb01bd__ (a, b, wr, wi, discrete, alpha, tol);
  f = -f;                          # A + B*F --> A - B*F

  info = struct ("nfp", nfp, "nap", nap, "nup", nup, "z", z);

endfunction


## Test from "legacy" control package 1.0.*
%!shared A, B, C, P, Kexpected
%! A = [0, 1; 3, 2];
%! B = [0; 1];
%! C = [2, 1];  # C is needed for ss; it doesn't matter what the value of C is
%! P = [-1, -0.5];
%! Kexpected = [3.5, 3.5];
%!assert (place (ss (A, B, C), P), Kexpected, 2*eps);
%!assert (place (A, B, P), Kexpected, 2*eps);

## FIXME: Test from SLICOT example SB01BD fails with 4 eigenvalues in P
%!shared F, F_exp, ev_ol, ev_cl
%! A = [-6.8000   0.0000  -207.0000   0.0000
%!       1.0000   0.0000     0.0000   0.0000
%!      43.2000   0.0000     0.0000  -4.2000
%!       0.0000   0.0000     1.0000   0.0000];
%!
%! B = [ 5.6400   0.0000
%!       0.0000   0.0000
%!       0.0000   1.1800
%!       0.0000   0.0000];
%!
%! P = [-0.5000 + 0.1500i
%!      -0.5000 - 0.1500i];
#%!      -2.0000 + 0.0000i
#%!      -0.4000 + 0.0000i];
%!
%! ALPHA = -0.4;
%! TOL = 1e-8;
%!
%! F = place (A, B, P, ALPHA, TOL);
%!
%! F_exp = - [-0.0876  -4.2138   0.0837 -18.1412
%!            -0.0233  18.2483  -0.4259  -4.8120];
%!
%! ev_ol = sort (eig (A));
%! ev_cl = sort (eig (A - B*F));
%!
%!assert (F, F_exp, 1e-4);
%!assert (ev_ol(3:4), ev_cl(3:4), 1e-4);