This file is indexed.

/usr/share/octave/packages/control-3.0.0/rlocus.m is in octave-control 3.0.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
## Copyright (C) 1996, 2000, 2004, 2005, 2006, 2007
##               Auburn University. All rights reserved.
##
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} rlocus (@var{sys}) 
## @deftypefnx {Function File} {[@var{rldata}, @var{k}] =} rlocus (@var{sys}, @var{increment}, @var{min_k}, @var{max_k}) 
## Display root locus plot of the specified @acronym{SISO} system.
##
## @strong{Inputs}
## @table @var
## @item sys
## @acronym{LTI} model.  Must be a single-input and single-output (SISO) system.
## @item increment
## The increment used in computing gain values.
## @item min_k
## Minimum value of @var{k}.
## @item max_k
## Maximum value of @var{k}.
## @end table
##
## @strong{Outputs}
## @table @var 
## @item rldata
## Data points plotted: in column 1 real values, in column 2 the imaginary values.
## @item k
## Gains for real axis break points.
## @end table
##
## @strong{Block Diagram}
## @example
## @group
##  u    +         +---+      +------+             y
## ------>(+)----->| k |----->| SISO |-------+------->
##         ^ -     +---+      +------+       |
##         |                                 |
##         +---------------------------------+
## @end group
## @end example
## @end deftypefn

## Author: David Clem
## Author: R. Bruce Tenison <btenison@eng.auburn.edu>
## Updated by Kristi McGowan July 1996 for intelligent gain selection
## Updated by John Ingram July 1996 for systems

## Adapted-By: Lukas Reichlin <lukas.reichlin@gmail.com>
## Date: December 2009
## Version: 0.6

function [rldata_r, k_break, rlpol, gvec, real_ax_pts] = rlocus (sys, increment, min_k, max_k)

  ## TODO: improve compatibility to the "dark side"
  ## TODO: untangle spaghetti code
  ## TODO: multiplot feature:   rlocus (sys1, "b", sys2, "r", ...)

  if (nargin < 1 || nargin > 4)
    print_usage ();
  endif

  if (! isa (sys, "lti") || ! issiso (sys))
    error ("rlocus: first argument must be a SISO LTI model");
  endif

  ## Convert the input to a transfer function if necessary
  [num, den] = tfdata (sys, "vector");     # extract numerator/denominator polynomials
  lnum = length (num);
  lden = length (den);
  ## equalize length of num, den polynomials
  ## TODO: handle case lnum > lden (non-proper models)
  if (lden < 2)
    error ("rlocus: system has no poles");
  elseif (lnum < lden)
    num = [zeros(1,lden-lnum), num];       # so that derivative is shortened by one
  endif

  olpol = roots (den);
  olzer = roots (num);
  nas = lden - lnum;                       # number of asymptotes
  maxk = 0;
  if (nas > 0)
    cas = (sum (olpol) - sum (olzer)) / nas;
    angles = (2*[1:nas]-1)*pi/nas;
    ## printf("rlocus: there are %d asymptotes centered at %f\n", nas, cas);
  else
    cas = angles = [];
    maxk = 100*den(1)/num(1);
  endif


  ## compute real axis break points and corresponding gains
  dnum = polyder (num);
  dden = polyder (den);
  brkp = conv (den, dnum) - conv (num, dden);
  real_ax_pts = roots (brkp);
  real_ax_pts = real_ax_pts(find (imag (real_ax_pts) == 0));
  real_ax_pts(polyval (num, real_ax_pts) == 0) = [];  # avoid division by zero and therefore infinite k_break
  k_break = -polyval (den, real_ax_pts) ./ polyval (num, real_ax_pts);
  idx = find (k_break >= 0);
  k_break = k_break(idx);
  real_ax_pts = real_ax_pts(idx);
  if (! isempty (k_break))
    maxk = max (max (k_break), maxk);
  endif
  
  if (nas == 0)
    maxk = max (1, 2*maxk);                # get at least some root locus
  else
    ## get distance from breakpoints, poles, and zeros to center of asymptotes
    dmax = 3*max (abs ([vec(olzer); vec(olpol); vec(real_ax_pts)] - cas));
    if (dmax == 0)
      dmax = 1;
    endif
 
    ## get gain for dmax along each asymptote, adjust maxk if necessary
    svals = cas + dmax * exp (j*angles);
    kvals = -polyval (den, svals) ./ polyval (num, svals);
    maxk = max (maxk, max (real (kvals)));
  endif
  
  ## check for input arguments:
  if (nargin > 2)
    mink = min_k;
  else
    mink = 0;
  endif
  if (nargin > 3)
    maxk = max_k;
  endif
  if (nargin > 1)
    if (increment <= 0)
      error ("rlocus: increment must be positive");
    else
      ngain = fix ((maxk-mink)/increment);
    endif
  else
    ngain = 30;
  endif

  ## vector of gains
  ngain = max (30, ngain);
  gvec = linspace (mink, maxk, ngain);
  if (length (k_break))
    gvec = sort ([gvec, reshape(k_break, 1, [])]);
  endif

  ## Find the open loop zeros and the initial poles
  rlzer = roots (num);

  ## update num to be the same length as den
  lnum = length (num);  
  if (lnum < lden)
    num = [zeros(1,lden - lnum),num];
  endif

  ## compute preliminary pole sets
  nroots = lden - 1;
  for ii = 1:ngain
   gain = gvec(ii);
   rlpol(1:nroots,ii) = vec(sort_complex_roots (roots (den + gain*num)));
  endfor

  ## set smoothing tolerance 
  smtolx = 0.01*(max (max (real (rlpol))) - min (min (real (rlpol))));
  smtoly = 0.01*(max (max (imag (rlpol))) - min (min (imag (rlpol))));
  smtol = max (smtolx, smtoly);
  ## sort according to nearest-neighbor
  rlpol = sort_roots (rlpol, smtolx, smtoly);

  done = (nargin == 4);                    # perform a smoothness check
  while (! done && ngain < 1000)
    done = 1 ;                             # assume done
    dp = abs (diff (rlpol.')).';
    maxdp = max (dp);
    
    ## search for poles whose neighbors are distant
    if (lden == 2)
      idx = find (dp > smtol);
    else
      idx = find (maxdp > smtol);
    endif

    for ii = 1:length(idx)
      i1 = idx(ii);
      g1 = gvec(i1);
      p1 = rlpol(:,i1);

      i2 = idx(ii)+1;
      g2 = gvec(i2);
      p2 = rlpol(:,i2);

      ## isolate poles in p1, p2 
      if (max (abs (p2-p1)) > smtol)
        newg = linspace (g1, g2, 5);
        newg = newg(2:4);
        gvec = [gvec,newg];
        done = 0;                          # need to process new gains
      endif
    endfor

    ## process new gain values
    ngain1 = length (gvec);
    for ii = (ngain+1):ngain1
      gain = gvec(ii);
      rlpol(1:nroots,ii) = vec(sort_complex_roots (roots (den + gain*num)));
    endfor

    [gvec, idx] = sort (gvec);
    rlpol = rlpol(:,idx);
    ngain = length (gvec);
    ## sort according to nearest-neighbor
    rlpol = sort_roots (rlpol, smtolx, smtoly);
  endwhile
  rldata = rlpol;

  ## Plot the data
  if (nargout  == 0)
    rlpolv = vec(rlpol);
    axdata = [real(rlpolv), imag(rlpolv); real(olzer), imag(olzer)];
    axlim = __axis_limits__ (axdata);
    rldata = [real(rlpolv), imag(rlpolv) ];

    %inname = get (sys, "inname");
    %outname = get (sys, "outname");

    ## build plot command args pole by pole

    n_rlpol = rows (rlpol);
    nelts = n_rlpol+1;
    if (! isempty (rlzer))
      nelts++;
    endif
    ## add asymptotes
    n_A = length (olpol) - length (olzer);
    if (n_A > 0)
      nelts += n_A;
    endif
    args = cell (3, nelts);
    kk = 0;
    ## asymptotes first
    if (n_A > 0)
      len_A = 2*max (abs (axlim));
      sigma_A = (sum(olpol) - sum(olzer))/n_A;
      for i_A=0:n_A-1
        phi_A = pi*(2*i_A + 1)/n_A;
        args{1,++kk} = [sigma_A sigma_A+len_A*cos(phi_A)];
        args{2,kk} = [0 len_A*sin(phi_A)];
        if (i_A == 1)
          args{3,kk} = "k--;asymptotes;";
        else
          args{3,kk} = "k--";
        endif
      endfor
    endif
    ## locus next
    for ii = 1:rows(rlpol)
      args{1,++kk} = real (rlpol (ii,:));
      args{2,kk} = imag (rlpol (ii,:));
      if (ii == 1)
        args{3,kk} = "b-;locus;";
      else
        args{3,kk} = "b-";
      endif
    endfor
    ## poles and zeros last
    args{1,++kk} = real (olpol);
    args{2,kk} = imag (olpol);
    args{3,kk} = "rx;open loop poles;";
    if (! isempty (rlzer))
      args{1,++kk} = real (rlzer);
      args{2,kk} = imag (rlzer);
      args{3,kk} = "go;zeros;";
    endif
    hplt = plot (args{:});                 # yes, line 288 is a duplicate of line 290 - needed for subplots
    set (gcf,"visible","off");
    hplt = plot (args{:});
    set (hplt(kk--), "markersize", 2);
    if (! isempty (rlzer))
      set (hplt(kk--), "markersize", 2);
    endif
    for ii = 1:rows(rlpol)
      set (hplt(kk--), "linewidth", 2);
    endfor
    legend ("boxon", 2);
    grid ("on");
    axis (axlim);
    title (["Root Locus of ", inputname(1)]);
    xlabel (sprintf ("Real Axis     gain = [%g, %g]", gvec(1), gvec(ngain)));
    ylabel ("Imaginary Axis");
    set (gcf (), "visible", "on");
  else
    rldata_r = rldata;
  endif
endfunction


function rlpol = sort_roots (rlpol, tolx, toly)
  ## no point sorting of you've only got one pole!
  if (rows (rlpol) == 1)
    return;
  endif

  ## reorder entries in each column of rlpol to be by their nearest-neighbors rlpol
  dp = diff (rlpol.').';
  drp = max (real (dp));
  dip = max (imag (dp));
  idx = find (drp > tolx | dip > toly);
  if (isempty (idx))
    return;
  endif

  [np, ng] = size (rlpol);                 # num poles, num gains
  for jj = idx
    vals = rlpol(:,[jj,jj+1]);
    jdx = (jj+1):ng;
    for ii = 1:rows(rlpol-1)
      rdx = ii:np;
      dval = abs (rlpol(rdx,jj+1)-rlpol(ii,jj));
      mindist = min (dval);
      sidx = min (find (dval == mindist)) + ii - 1;
      if (sidx != ii)
        c1 = norm (diff(vals.'));
        [vals(ii,2), vals(sidx,2)] = swap (vals(ii,2), vals(sidx,2));
        c2 = norm (diff (vals.'));
        if (c1 > c2)
          ## perform the swap
          [rlpol(ii,jdx), rlpol(sidx,jdx)] = swap (rlpol(ii,jdx), rlpol(sidx,jdx));
          vals = rlpol(:,[jj,jj+1]);
        endif
      endif
    endfor
  endfor

endfunction


function [b, a] = swap (a, b)

endfunction


function c = sort_complex_roots (c)

  ## This function sorts complex numbers such that
  ## 1) All the pure reals come first and are sorted.
  ## 2) All complex numbers are sorted by the regular sort. 

  c = vec (c);

  idx = (imag (c) == 0);
  cre = sort (c(idx));
  cim = sort (c(! idx));
  
  c = vertcat (cre, cim);
  
endfunction