/usr/share/octave/packages/image-2.6.1/edge.m is in octave-image 2.6.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 | ## Copyright (C) 1999 Andy Adler <adler@sce.carleton.ca>
## Copyright (C) 2008 Søren Hauberg <soren@hauberg.org>
## Copyright (C) 2015 Hartmut Gimpel <hg_code@gmx.de>
## Copyright (C) 2015 Carnë Draug <carandraug@octave.org>
##
## This program is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation; either version 3 of the
## License, or (at your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see
## <http:##www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{bw}, @var{thresh}] =} edge (@var{im}, @var{method}, @dots{})
## Find edges using various methods.
##
## The image @var{im} must be 2 dimensional and grayscale. The @var{method}
## must be a string with the string name. The other input arguments are
## dependent on @var{method}.
##
## @var{bw} is a binary image with the identified edges. @var{thresh} is
## the threshold value used to identify those edges. Note that @var{thresh}
## is used on a filtered image and not directly on @var{im}.
##
## @seealso{fspecial}
##
## @end deftypefn
## @deftypefn {Function File} {} edge (@var{im}, @qcode{"Canny"})
## @deftypefnx {Function File} {} edge (@var{im}, @qcode{"Canny"}, @var{thresh})
## @deftypefnx {Function File} {} edge (@var{im}, @qcode{"Canny"}, @var{thresh}, @var{sigma})
## Find edges using the Canny method.
##
## @var{thresh} is two element vector for the hysteresis thresholding.
## The lower and higher threshold values are the first and second elements
## respectively. If it is a scalar value, the lower value is set to
## @code{0.4 * @var{thresh}}.
##
## @var{sigma} is the standard deviation to be used on the Gaussian filter
## that is used to smooth the input image prior to estimating gradients.
## Defaults to @code{sqrt (2)}.
##
## @end deftypefn
## @deftypefn {Function File} {} edge (@var{im}, @qcode{"Kirsch"})
## @deftypefnx {Function File} {} edge (@var{im}, @qcode{"Kirsch"}, @var{thresh})
## @deftypefnx {Function File} {} edge (@var{im}, @qcode{"Kirsch"}, @var{thresh}, @var{direction})
## @deftypefnx {Function File} {} edge (@var{im}, @qcode{"Kirsch"}, @var{thresh}, @var{direction}, @var{thinning})
## Find edges using the Kirsch approximation to the derivatives.
##
## Edge points are defined as points where the length of the gradient exceeds
## a threshold @var{thresh}.
##
## @var{thresh} is the threshold used and defaults to twice the square root of the
## mean of the gradient squared of @var{im}.
##
## @var{direction} is the direction of which the gradient is
## approximated and can be @qcode{"vertical"}, @qcode{"horizontal"},
## or @qcode{"both"} (default).
##
## @var{thinning} can be the string @qcode{"thinning"} (default) or
## @qcode{"nothinning"}. This controls if a simple thinning procedure
## is applied to the edge image such that edge points also need to have
## a larger gradient than their neighbours. The resulting "thinned"
## edges are only one pixel wide.
##
## @end deftypefn
## @deftypefn {Function File} {} edge (@var{im}, @qcode{"Lindeberg"})
## @deftypefnx {Function File} {} edge (@var{im}, @qcode{"Lindeberg"}, @var{sigma})
## Find edges using the the differential geometric single-scale edge
## detector by Tony Lindeberg.
##
## @var{sigma} is the scale (spread of Gaussian filter) at which the edges
## are computed. Defaults to @code{2}.
##
## This method does not use a threshold value and therefore does not return
## one.
##
## @end deftypefn
## @deftypefn {Function File} {} edge (@var{im}, @qcode{"LoG"})
## @deftypefnx {Function File} {} edge (@var{im}, @qcode{"LoG"}, @var{thresh}, @var{sigma})
## Find edges by convolving with the Laplacian of Gaussian (LoG) filter,
## and finding zero crossings.
##
## Only zero crossings where the filter response is larger than @var{thresh}
## are retained. @var{thresh} is automatically computed as 0.75*@math{M},
## where @math{M} is the mean of absolute value of LoG filter response.
##
## @var{sigma} sets the spread of the LoG filter. Default to @code{2}.
##
## @end deftypefn
## @deftypefn {Function File} {} edge (@var{im}, @qcode{"Prewitt"}, @dots{})
## Find edges using the Prewitt approximation to the derivatives.
##
## This method is the same as Kirsch except a different approximation
## gradient is used.
##
## @end deftypefn
## @deftypefn {Function File} {} edge (@var{im}, @qcode{"Roberts"})
## @deftypefnx {Function File} {} edge (@var{im}, @qcode{"Roberts"}, @var{thresh})
## @deftypefnx {Function File} {} edge (@var{im}, @qcode{"Roberts"}, @var{thresh}, @var{thinning})
## Find edges using the Roberts approximation to the derivatives.
##
## This method is similar to Kirsch except a different approximation
## gradient is used, and the default @var{thresh} is multiplied by sqrt(1.5).
## In addition, there it does not accept the @var{direction} argument.
##
## @end deftypefn
## @deftypefn {Function File} {} edge (@var{im}, @qcode{"Sobel"}, @dots{})
## Find edges using the Sobel approximation to the derivatives.
##
## This method is the same as Kirsch except a different approximation
## gradient is used.
##
## @end deftypefn
## @deftypefn {Function File} {} edge (@var{im}, @qcode{"zerocross"}, @var{thresh}, @var{filter})
## Find edges by convolving with a user-supplied filter and finding zero
## crossings.
##
## @end deftypefn
## @deftypefn {Function File} {} edge (@var{im}, @qcode{"Andy"}, @var{thresh}, @var{params})
## Find edges by the original (Andy Adlers) @code{edge} algorithm.
## The steps are
## @enumerate
## @item
## Do a Sobel edge detection and to generate an image at
## a high and low threshold.
## @item
## Edge extend all edges in the LT image by several pixels,
## in the vertical, horizontal, and 45 degree directions.
## Combine these into edge extended (EE) image.
## @item
## Dilate the EE image by 1 step.
## @item
## Select all EE features that are connected to features in
## the HT image.
## @end enumerate
##
## The parameters for the method is given in a vector:
## @table @asis
## @item params(1)==0 or 4 or 8
## Perform x connected dilatation (step 3).
## @item params(2)
## Dilatation coefficient (threshold) in step 3.
## @item params(3)
## Length of edge extention convolution (step 2).
## @item params(4)
## Coefficient of extention convolution in step 2.
## @end table
## defaults = [8, 1, 3, 3]
##
## @end deftypefn
function [bw_out, thresh, varargout] = edge (im, method = "sobel", varargin)
if (nargin < 1 || nargin > 5)
print_usage ();
endif
if (! isgray (im))
error ("edge: IM must be a grayscale image");
endif
method = tolower (method);
switch (method)
case {"sobel", "prewitt", "kirsch"}
[bw, thresh] = edge_kirsch_prewitt_sobel (im, method, varargin{:});
case "roberts"
[bw, thresh, varargout{1:2}] = edge_roberts (im, varargin{:});
case "log"
[bw, thresh] = edge_log (im, varargin{:});
case "zerocross"
[bw, thresh] = edge_zerocross (im, varargin{:});
case "canny"
[bw, thresh] = edge_canny (im, varargin{:});
case "lindeberg"
[bw] = edge_lindeberg (im, varargin{:});
case "andy"
[bw, thresh] = edge_andy (im, varargin{:});
otherwise
error ("edge: unsupported edge detector `%s'", method);
endswitch
if (nargout == 0)
imshow (bw);
else
bw_out = bw;
endif
endfunction
function [bw, thresh] = edge_kirsch_prewitt_sobel (im, method, varargin)
if (numel (varargin) > 3)
error ("edge: %s method takes at most 3 extra arguments", method);
endif
## This supports thinning, direction, and thresh arguments in any
## order. Matlab madness I tell you.
varargin = tolower (varargin);
direction_mask = (strcmp (varargin, "both")
| strcmp (varargin, "horizontal")
| strcmp (varargin, "vertical"));
thinning_mask = (strcmp (varargin, "thinning")
| strcmp (varargin, "nothinning"));
thresh_mask = cellfun (@(x) isnumeric (x) && (isscalar (x) || isempty (x)),
varargin);
if (! all (direction_mask | thinning_mask | thresh_mask))
error ("edge: %s method takes only THRESH, DIRECTION, and THINNING arguments",
method);
endif
if (nnz (direction_mask) > 1)
error ("edge: more than 1 direction argument defined");
elseif (any (direction_mask))
direction = varargin{direction_mask};
else
direction = "both";
endif
if (nnz (thinning_mask) > 1)
error ("edge: more than 1 thinning argument defined");
elseif (any (thinning_mask)
&& strcmp (varargin{thinning_mask}, "nothinning"))
thinning = false;
else
thinning = true;
endif
if (nnz (thresh_mask) > 1)
error ("edge: more than 1 threshold argument defined");
elseif (any (thresh_mask))
thresh = varargin{thresh_mask};
else
thresh = [];
endif
## For better speed, the calculation is done with
## squared edge strenght values (strength2) and
## squared threshold values (thresh2).
h1 = fspecial (method);
h1 ./= sum (abs (h1(:))); # normalize h1
im = im2double (im);
switch (direction)
case "horizontal"
strength2 = imfilter (im, h1, "replicate").^2;
case "vertical"
strength2 = imfilter (im, h1', "replicate").^2;
case "both"
strength2 = (imfilter (im, h1, "replicate").^2
+ imfilter (im, h1', "replicate").^2);
otherwise
error ("edge: unknown DIRECTION `%s' for %s method", direction, method);
endswitch
if (isempty (thresh))
thresh2 = 4 * mean (strength2(:));
thresh = sqrt (thresh2);
else
thresh2 = thresh .^ 2;
endif
if (thinning)
## Keep edge strengths for use in non-maximum
## suppresion in the simple_thinning step.
strength2(strength2<=thresh2) = 0;
bw = simple_thinning (strength2);
else
bw = strength2 > thresh2;
endif
endfunction
function [bw, thresh, g45, g135] = edge_roberts (im, varargin)
if (numel (varargin) > 2)
error ("edge: Roberts method takes at most 2 extra arguments");
endif
## This supports thinning, direction, and thresh arguments in any
## order. Matlab madness I tell you.
varargin = tolower (varargin);
thinning_mask = (strcmp (varargin, "thinning")
| strcmp (varargin, "nothinning"));
thresh_mask = cellfun (@(x) isnumeric (x) && (isscalar (x) || isempty (x)),
varargin);
if (! all (thinning_mask | thresh_mask))
error ("edge: roberts method takes only THRESH and THINNING arguments");
endif
if (nnz (thinning_mask) > 1)
error ("edge: more than 1 thinning argument defined");
elseif (any (thinning_mask)
&& strcmp (varargin{thinning_mask}, "nothinning"))
thinning = false;
else
thinning = true;
endif
if (nnz (thresh_mask) > 1)
error ("edge: more than 1 threshold argument defined");
elseif (any (thresh_mask))
thresh = varargin{thresh_mask};
else
thresh = [];
endif
h1 = [1 0; 0 -1] ./ 2;
h2 = [0 1; -1 0] ./ 2;
g45 = imfilter (im, h1, "replicate");
g135 = imfilter (im, h2, "replicate");
strength2 = g45.^2 + g135.^2;
if (isempty (thresh))
thresh2 = 6 * mean (strength2(:));
thresh = sqrt (thresh2);
else
thresh2 = thresh .^ 2;
endif
if (thinning)
## Keep edge strengths for use in non-maximum
## suppresion in the simple_thinning step.
strength2(strength2<=thresh2) = 0;
bw = simple_thinning (strength2);
else
bw = strength2 > thresh2;
endif
endfunction
function [bw, thresh] = edge_log (im, thresh = [], sigma = 2)
if (nargin > 1 && (! isnumeric (thresh) || all (numel (thresh) != [0 1])))
error ("edge: THRESH for LoG method must be a numeric scalar or empty");
endif
if (nargin > 2 && (! isnumeric (sigma) || ! isscalar (sigma)))
error ("edge: SIGMA for LoG method must be a numeric scalar");
endif
f = fspecial ("log", (2 * ceil (3*sigma)) +1, sigma);
g = conv2 (im, f, "same");
if (isempty (thresh))
thresh = 0.75*mean(abs(g(:)));
endif
bw = (abs (g) > thresh) & zerocrossings (g);
endfunction
function [bw, thresh] = edge_zerocross (im, thresh, f)
## because filter is a required argument, so is thresh
if (nargin != 3)
error ("edge: a FILTER and THRESH are required for the zerocross method");
elseif (! isnumeric (thresh) || all (numel (thresh) != [0 1]))
error ("edge: THRESH for zerocross method must be a numeric scalar or empty");
elseif (! isnumeric (f))
error ("edge: FILTER for zerocross method must be numeric");
endif
g = conv2 (im, f, "same");
if (isempty (thresh))
thresh = mean (abs (g(:)));
endif
bw = (abs (g) > thresh) & zerocrossings(g);
endfunction
function [bw, thresh] = edge_canny (im, thresh = [], sigma = sqrt (2))
if (nargin > 1 && (! isnumeric (thresh) || all (numel (thresh) != [0 1 2])))
error ("edge: THRESH for Canny method must have 0, 1, or 2 elements");
endif
if (nargin > 2 && (! isnumeric (sigma) || ! isscalar (sigma)))
error ("edge: SIGMA for Canny method must be a numeric scalar");
endif
## Gaussian filtering to change the edge scale.
## Treat each dimensions separately for performance.
gauss = fspecial ("gaussian", [1 (8*ceil(sigma))], sigma);
im = im2double (im);
J = imfilter (im, gauss, "replicate");
J = imfilter (J, gauss', "replicate");
## edge detection with Prewitt filter (treat dimensions separately)
p = [1 0 -1]/2;
Jx = imfilter (J, p, "replicate");
Jy = imfilter (J, p', "replicate");
Es = sqrt (Jx.^2 + Jy.^2);
Es_max = max (Es(:));
if (Es_max > 0)
Es ./= Es_max;
endif
Eo = pi - mod (atan2 (Jy, Jx) - pi, pi);
if (isempty (thresh))
tmp = mean(abs(Es(:)));
thresh = [0.4*tmp, tmp];
elseif (numel (thresh) == 1)
thresh = [0.4*thresh thresh];
else
thresh = thresh(:).'; # always return a row vector
endif
bw = nonmax_supress(Es, Eo, thresh(1), thresh(2));
endfunction
function [bw] = edge_lindeberg (im, sigma = 2)
if (nargin > 1 && (! isnumeric (sigma) || ! isscalar (sigma)))
error ("edge: SIGMA for Lindeberg method must be a numeric scalar");
endif
## Filters for computing the derivatives
Px = [-1 0 1; -1 0 1; -1 0 1];
Py = [1 1 1; 0 0 0; -1 -1 -1];
Pxx = conv2 (Px, Px, "full");
Pyy = conv2 (Py, Py, "full");
Pxy = conv2 (Px, Py, "full");
Pxxx = conv2 (Pxx, Px, "full");
Pyyy = conv2 (Pyy, Py, "full");
Pxxy = conv2 (Pxx, Py, "full");
Pxyy = conv2 (Pyy, Px, "full");
## Change scale
L = imsmooth (double (im), "Gaussian", sigma);
## Compute derivatives
Lx = conv2 (L, Px, "same");
Ly = conv2 (L, Py, "same");
Lxx = conv2 (L, Pxx, "same");
Lyy = conv2 (L, Pyy, "same");
Lxy = conv2 (L, Pxy, "same");
Lxxx = conv2 (L, Pxxx, "same");
Lyyy = conv2 (L, Pyyy, "same");
Lxxy = conv2 (L, Pxxy, "same");
Lxyy = conv2 (L, Pxyy, "same");
## Compute directional derivatives
Lvv = Lx.^2.*Lxx + 2.*Lx.*Ly.*Lxy + Ly.^2.*Lyy;
Lvvv = Lx.^3.*Lxxx + 3.*Lx.^2.*Ly.*Lxxy ...
+ 3.*Lx.*Ly.^2.*Lxyy + 3.*Ly.^3.*Lyyy;
## Perform edge detection
bw = zerocrossings (Lvv) & Lvvv < 0;
endfunction
## The 'andy' edge detector that was present in older versions of 'edge'.
function [imout, thresh] = edge_andy (im, thresh, param2)
[n,m]= size(im);
xx= 2:m-1;
yy= 2:n-1;
filt= [1 2 1;0 0 0; -1 -2 -1]/8; tv= 2;
imo= conv2(im, rot90(filt), 'same').^2 + conv2(im, filt, 'same').^2;
if nargin<2 || thresh==[];
thresh= sqrt( tv* mean(mean( imo(yy,xx) )) );
end
# sum( imo(:)>thresh ) / prod(size(imo))
dilate= [1 1 1;1 1 1;1 1 1]; tt= 1; sz=3; dt=3;
if nargin>=3
# 0 or 4 or 8 connected dilation
if length(param2) > 0
if param2(1)==4 ; dilate= [0 1 0;1 1 1;0 1 0];
elseif param2(1)==0 ; dilate= 1;
end
end
# dilation threshold
if length(param2) > 2; tt= param2(2); end
# edge extention length
if length(param2) > 2; sz= param2(3); end
# edge extention threshold
if length(param2) > 3; dt= param2(4); end
end
fobliq= [0 0 0 0 1;0 0 0 .5 .5;0 0 0 1 0;0 0 .5 .5 0;0 0 1 0 0;
0 .5 .5 0 0;0 1 0 0 0;.5 .5 0 0 0;1 0 0 0 0];
fobliq= fobliq( 5-sz:5+sz, 3-ceil(sz/2):3+ceil(sz/2) );
xpeak= imo(yy,xx-1) <= imo(yy,xx) & imo(yy,xx) > imo(yy,xx+1) ;
ypeak= imo(yy-1,xx) <= imo(yy,xx) & imo(yy,xx) > imo(yy+1,xx) ;
imht= ( imo >= thresh^2 * 2); # high threshold image
imht(yy,xx)= imht(yy,xx) & ( xpeak | ypeak );
imht([1,n],:)=0; imht(:,[1,m])=0;
% imlt= ( imo >= thresh^2 / 2); # low threshold image
imlt= ( imo >= thresh^2 / 1); # low threshold image
imlt(yy,xx)= imlt(yy,xx) & ( xpeak | ypeak );
imlt([1,n],:)=0; imlt(:,[1,m])=0;
# now we edge extend the low thresh image in 4 directions
imee= ( conv2( imlt, ones(2*sz+1,1) , 'same') > tt ) | ...
( conv2( imlt, ones(1,2*sz+1) , 'same') > tt ) | ...
( conv2( imlt, eye(2*sz+1) , 'same') > tt ) | ...
( conv2( imlt, rot90(eye(2*sz+1)), 'same') > tt ) | ...
( conv2( imlt, fobliq , 'same') > tt ) | ...
( conv2( imlt, fobliq' , 'same') > tt ) | ...
( conv2( imlt, rot90(fobliq) , 'same') > tt ) | ...
( conv2( imlt, flipud(fobliq) , 'same') > tt );
# imee(yy,xx)= conv2(imee(yy,xx),ones(3),'same') & ( xpeak | ypeak );
imee= conv2(imee,dilate,'same') > dt; #
% ff= find( imht==1 );
% imout = bwselect( imee, rem(ff-1, n)+1, ceil(ff/n), 8);
imout = imee;
endfunction
## An auxiliary function that performs a very simple thinning.
## Strength is an image containing the edge strength.
## bw contains a 1 in (r,c) if
## 1) strength(r,c) is greater than both neighbours in the
## vertical direction, OR
## 2) strength(r,c) is greater than both neighbours in the
## horizontal direction.
## Note the use of OR.
function bw = simple_thinning(strength)
[r c] = size(strength);
x = ( strength > [ zeros(r,1) strength(:,1:end-1) ] & ...
strength > [ strength(:,2:end) zeros(r,1) ] );
y = ( strength > [ zeros(1,c); strength(1:end-1,:) ] & ...
strength > [ strength(2:end,:); zeros(1,c) ] );
bw = x | y;
endfunction
## Auxiliary function. Finds the zero crossings of the
## 2-dimensional function f. (By Etienne Grossmann)
function z = zerocrossings(f)
z0 = f<0; ## Negative
[R,C] = size(f);
z = zeros(R,C);
z(1:R-1,:) |= z0(2:R,:); ## Grow
z(2:R,:) |= z0(1:R-1,:);
z(:,1:C-1) |= z0(:,2:C);
z(:,2:C) |= z0(:,1:C-1);
z &= !z0; ## "Positive zero-crossings"?
endfunction
## Test the madness of arbitrary order of input for prewitt, kirsch,
## and sobel methods.
%!test
%! im = [
%! 249 238 214 157 106 69 60 90 131 181 224 247 252 250 250
%! 250 242 221 165 112 73 62 91 133 183 225 248 252 250 251
%! 252 246 228 173 120 78 63 90 130 181 224 248 253 251 251
%! 253 248 232 185 132 87 62 80 116 170 217 244 253 251 252
%! 253 249 236 198 149 101 66 71 101 155 206 238 252 252 252
%! 254 250 240 210 164 115 73 69 92 143 196 232 252 253 252
%! 70 70 68 61 49 36 24 22 26 38 52 63 70 70 70
%! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
%! 62 63 62 59 51 42 33 25 22 26 36 45 56 60 62
%! 252 253 252 246 221 190 157 114 90 90 118 157 203 235 248
%! 251 253 254 251 233 209 182 136 103 92 107 139 185 225 245
%! 251 253 254 253 243 227 206 163 128 108 110 133 175 217 242
%! 252 253 254 254 249 241 228 195 164 137 127 139 172 212 239
%! ] / 255;
%!
%! methods = {"kirsch", "prewitt", "sobel"};
%! for m_i = 1:numel (methods)
%! method = methods{m_i};
%!
%! bw = edge (im, method, 0.2, "both", "thinning");
%! assert (edge (im, method, 0.2), bw)
%!
%! args = perms ({0.2, "both", "thinning"});
%! for i = 1:rows (args)
%! assert (edge (im, method, args{i,:}), bw)
%! endfor
%!
%! bw = edge (im, method, 0.2, "vertical", "nothinning");
%! args = perms ({0.2, "vertical", "nothinning"});
%! for i = 1:rows (args)
%! assert (edge (im, method, args{i,:}), bw)
%! endfor
%!
%! bw = edge (im, method, 0.2, "vertical", "thinning");
%! args = perms ({0.2, "vertical"});
%! for i = 1:rows (args)
%! assert (edge (im, method, args{i,:}), bw)
%! endfor
%!
%! bw = edge (im, method, 0.2, "both", "nothinning");
%! args = perms ({0.2, "nothinning"});
%! for i = 1:rows (args)
%! assert (edge (im, method, args{i,:}), bw)
%! endfor
%! endfor
%!error <more than 1 threshold argument>
%! bw = edge (rand (10), "sobel", 0.2, 0.4)
%!error <more than 1 thinning argument>
%! bw = edge (rand (10), "sobel", "thinning", "nothinning")
%!error <more than 1 direction argument>
%! bw = edge (rand (10), "sobel", "both", "both")
%!error <only THRESH, DIRECTION, and THINNING arguments>
%! bw = edge (rand (10), "sobel", [0.2 0.7], "both", "thinning")
%!error <more than 1 threshold argument>
%! bw = edge (rand (10), "kirsch", 0.2, 0.4)
%!error <more than 1 thinning argument>
%! bw = edge (rand (10), "kirsch", "thinning", "nothinning")
%!error <more than 1 direction argument>
%! bw = edge (rand (10), "kirsch", "both", "both")
%!error <only THRESH, DIRECTION, and THINNING arguments>
%! bw = edge (rand (10), "kirsch", [0.2 0.7], "both", "thinning")
%!error <more than 1 threshold argument>
%! bw = edge (rand (10), "prewitt", 0.2, 0.4)
%!error <more than 1 thinning argument>
%! bw = edge (rand (10), "prewitt", "thinning", "nothinning")
%!error <more than 1 direction argument>
%! bw = edge (rand (10), "prewitt", "both", "both")
%!error <only THRESH, DIRECTION, and THINNING arguments>
%! bw = edge (rand (10), "prewitt", [0.2 0.7], "both", "thinning")
%!test
%! im = [
%! 249 238 214 157 106 69 60 90 131 181 224 247 252 250 250
%! 250 242 221 165 112 73 62 91 133 183 225 248 252 250 251
%! 252 246 228 173 120 78 63 90 130 181 224 248 253 251 251
%! 253 248 232 185 132 87 62 80 116 170 217 244 253 251 252
%! 253 249 236 198 149 101 66 71 101 155 206 238 252 252 252
%! 254 250 240 210 164 115 73 69 92 143 196 232 252 253 252
%! 70 70 68 61 49 36 24 22 26 38 52 63 70 70 70
%! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
%! 62 63 62 59 51 42 33 25 22 26 36 45 56 60 62
%! 252 253 252 246 221 190 157 114 90 90 118 157 203 235 248
%! 251 253 254 251 233 209 182 136 103 92 107 139 185 225 245
%! 251 253 254 253 243 227 206 163 128 108 110 133 175 217 242
%! 252 253 254 254 249 241 228 195 164 137 127 139 172 212 239
%! ] / 255;
%!
%! bw = edge (im, "roberts", .2, "thinning");
%! assert (edge (im, "roberts", 0.2), bw)
%! assert (edge (im, "roberts", "thinning", 0.2), bw)
%!
%! bw = edge (im, "roberts", .2, "nothinning");
%! assert (edge (im, "roberts", "nothinning", 0.2), bw)
%!error <more than 1 threshold argument>
%! bw = edge (rand (10), "roberts", 0.2, 0.4)
%!error <more than 1 thinning argument>
%! bw = edge (rand (10), "roberts", "thinning", "nothinning")
%!error <only THRESH and THINNING arguments>
%! bw = edge (rand (10), "roberts", "both", "thinning")
## test how canny threshold arguments are always a row vector
%!test
%! im = rand (10);
%! [~, thresh] = edge (im, "canny");
%! assert (size (thresh), [1 2])
%! [~, thresh] = edge (im, "canny", [.2 .6]);
%! assert (thresh, [.2 .6])
%! [~, thresh] = edge (im, "canny", [.2; .6]);
%! assert (thresh, [.2 .6])
## test SOBEL edge detector
%!test
%! in = zeros (5);
%! in(3,3) = 1;
%!
%! E = logical ([
%! 0 0 0 0 0
%! 0 0 1 0 0
%! 0 1 0 1 0
%! 0 0 1 0 0
%! 0 0 0 0 0]);
%! assert (edge (in), E)
%! assert (edge (uint8 (in.*100)), E)
%! assert (edge (in, "sobel"), E)
%! assert (edge (in, "sobel", 0), E)
%! assert (edge (in, "sobel", 1), false (5))
%!
%! [E, auto_thresh] = edge (in);
%! assert (auto_thresh, 0.2449, 1e-4)
%!
%! V = logical([
%! 0 0 0 0 0
%! 0 1 0 1 0
%! 0 1 0 1 0
%! 0 1 0 1 0
%! 0 0 0 0 0]);
%! assert (edge (in, "sobel", 0, "vertical"), V)
%!
%! H = logical ([
%! 0 0 0 0 0
%! 0 1 1 1 0
%! 0 0 0 0 0
%! 0 1 1 1 0
%! 0 0 0 0 0]);
%! assert (edge (in, "sobel", 0, "horizontal"), H)
%!
%! V = false (5);
%! V(3,2) = true;
%! V(3,4) = true;
%! assert (edge (in, "sobel", [], "vertical"), V)
%!
%! H = false (5);
%! H(2,3) = true;
%! H(4,3) = true;
%! assert (edge (in, "sobel", [], "horizontal"), H)
%!test
%! A = ones (5);
%! A(3, 3) = 0;
%! expected = logical ([
%! 0 0 0 0 0
%! 0 0 1 0 0
%! 0 1 0 1 0
%! 0 0 1 0 0
%! 0 0 0 0 0]);
%! assert (edge (A), expected)
## test PREWITT edge detector
%!test
%! in = zeros (5);
%! in(3, 3) = 1;
%!
%! E = logical ([
%! 0 0 0 0 0
%! 0 1 0 1 0
%! 0 0 0 0 0
%! 0 1 0 1 0
%! 0 0 0 0 0]);
%!
%! assert (edge (in, "prewitt"), E)
%!
%! [~, auto_thresh] = edge (in, "prewitt");
%! assert (auto_thresh, 0.2309, 1e-4)
%!
%! V = logical([
%! 0 0 0 0 0
%! 0 1 0 1 0
%! 0 1 0 1 0
%! 0 1 0 1 0
%! 0 0 0 0 0]);
%! assert (edge (in, "prewitt", 0, "vertical"), V)
%!
%! H = logical ([
%! 0 0 0 0 0
%! 0 1 1 1 0
%! 0 0 0 0 0
%! 0 1 1 1 0
%! 0 0 0 0 0]);
%! assert (edge (in, "prewitt", 0, "horizontal"), H)
## test ROBERTS edge detector
%!test
%! in = zeros (5);
%! in(3,3) = 1;
%! in(3,4) = 0.9;
%!
%! E = logical ([
%! 0 0 0 0 0
%! 0 0 1 0 0
%! 0 0 1 0 0
%! 0 0 0 0 0
%! 0 0 0 0 0]);
%!
%! assert (edge (in, "roberts"), E)
%!
%! [~, auto_thresh] = edge (in, "roberts");
%! assert (auto_thresh, 0.6591, 1e-4)
%!
%! E45 = [0 0 0 0 0
%! 0 -0.5 -0.45 0 0
%! 0 0 0.50 0.45 0
%! 0 0 0 0 0
%! 0 0 0 0 0];
%! E135 = [0 0 0 0 0
%! 0 0 -0.50 -0.45 0
%! 0 0.5 0.45 0 0
%! 0 0 0 0 0
%! 0 0 0 0 0];
%!
%! [~, ~, erg45, erg135] = edge (in, "roberts");
%! assert (erg45, E45)
%! assert (erg135, E135)
## test CANNY edge detector
%!test
%! in_8 = fspecial ("gaussian", [8 8], 2);
%! in_8 /= in_8(4,4);
%! in_8_uint8 = im2uint8 (in_8);
%!
%! ## this is the result from Matlab's old canny method (before 2011a)
%! out_8_old = logical ([
%! 0 0 0 0 0 0 0 0
%! 0 0 0 1 1 0 0 0
%! 0 0 1 0 0 1 0 0
%! 0 1 0 0 0 0 1 0
%! 0 1 0 0 0 0 1 0
%! 0 0 1 0 0 1 0 0
%! 0 0 0 1 1 0 0 0
%! 0 0 0 0 0 0 0 0]);
%! out_8 = logical ([
%! 0 0 0 0 0 0 0 0
%! 0 1 1 1 1 1 0 0
%! 0 1 0 0 0 1 0 0
%! 0 1 0 0 0 1 0 0
%! 0 1 0 0 0 1 0 0
%! 0 1 1 1 1 1 0 0
%! 0 0 0 0 0 0 0 0
%! 0 0 0 0 0 0 0 0]);
%! out_thresh = [0.34375 0.859375];
%!
%! [obs_edge, obs_thresh] = edge (in_8, "Canny");
%! assert (obs_edge, out_8)
%! assert (obs_thresh, out_thresh)
%!
%! [obs_edge_givethresh, obs_thresh_givethresh] ...
%! = edge (in_8, "Canny", out_thresh);
%! assert (obs_edge_givethresh, out_8)
%! assert (obs_thresh_givethresh, out_thresh)
%!
%! [obs_edge_uint8, obs_thresh_uint8] = edge (in_8_uint8, "Canny");
%! assert (obs_edge_uint8, out_8)
%! assert (obs_thresh_uint8, out_thresh)
%!test
%! in_9 = fspecial ("gaussian", [9 9], 2);
%! in_9 /= in_9(5,5);
%!
%! ## this is the result from Matlab's old canny method (before 2011a)
%! out_9_old = logical ([
%! 0 0 0 0 0 0 0 0 0
%! 0 0 0 0 0 0 0 0 0
%! 0 0 0 1 1 1 0 0 0
%! 0 0 1 0 0 0 1 0 0
%! 0 0 1 0 0 0 1 0 0
%! 0 0 1 0 0 0 1 0 0
%! 0 0 0 1 1 1 0 0 0
%! 0 0 0 0 0 0 0 0 0
%! 0 0 0 0 0 0 0 0 0]);
%! out_9 = logical ([
%! 0 0 0 0 0 0 0 0 0
%! 0 0 1 1 1 1 0 0 0
%! 0 1 1 0 0 1 1 0 0
%! 0 1 0 0 0 0 1 0 0
%! 0 1 0 0 0 0 1 0 0
%! 0 1 1 0 0 1 1 0 0
%! 0 0 1 1 1 1 0 0 0
%! 0 0 0 0 0 0 0 0 0
%! 0 0 0 0 0 0 0 0 0]);
%! out_thresh = [0.35 0.875];
%!
%! [obs_edge, obs_thresh] = edge (in_9, "Canny");
%! assert (obs_edge, out_9)
%! assert (obs_thresh, out_thresh)
%!
%! [obs_edge_givethresh, obs_thresh_givethresh] ...
%! = edge (in_9, "Canny", out_thresh);
%! assert (obs_edge_givethresh, out_9)
%! assert (obs_thresh_givethresh, out_thresh)
|