This file is indexed.

/usr/share/octave/packages/image-2.6.1/fftconvn.m is in octave-image 2.6.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
## Copyright (C) 2015 Carnë Draug <carandraug@octave.org>
##
## This program is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation; either version 3 of the
## License, or (at your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} fftconvn (@var{A}, @var{B})
## @deftypefnx {Function File} {} fftconvn (@var{A}, @var{B}, @var{shape})
## Convolve N dimensional signals using the FFT for computation.
##
## This function is equivalent to @code{convn} but using the FFT.  It
## convolves the two N dimensional @var{A} and @var{B}.  The size of
## output is controlled by the option @var{shape} which removes the
## borders where boundary effects may be seen:
##
## @table @asis
## @item @qcode{"full"} (default)
## Return the full convolution.
##
## @item @qcode{"same"}
## Return central part of the convolution with the same size as @var{A}.
##
## @item @qcode{"valid"}
## Return only the parts which do not include zero-padded edges.
##
## @end table
##
## Using the FFT may be faster but this is not always the case and can
## be a lot worse, specially for smalls @var{A} and @var{B}.  This performance
## increase also comes at the cost of increased memory usage, as well as a loss
## of precision.
##
## @example
## @group
## a = randi (255, 1024, 1024);
## b = randi (255, 10, 10);
## t = cputime (); convn (a, b); cputime () -t
##    @result{} 0.096000
## t = cputime (); fftconvn (a, b); cputime () -t
##    @result{} 1.2560
##
## b = randi (255, 50, 50);
## t = cputime (); convn (a, b); cputime () -t
##    @result{} 2.3400
## t = cputime (); fftconvn (a, b); cputime () -t
##    @result{} 1.2560
## @end group
## @end example
##
## Note how computation time for @code{convn} increased with the size of
## @var{B} but remained constant when using @code{fftconvn}.  When
## performing the convolution, @code{fftconvn} zero pads both @var{A} and
## @var{B} so their lengths are a power of two on all dimensions.
## This may further increase memory usage but will also increase
## performance.  In this example, the computation time will remain constant
## until @code{size (@var{A}) + size (@var{B}) -1} is greater than 2048
## after which it will remain constant again until it reaches 4096.
##
## @example
## @group
## a = randi (255, 1024, 1024);
## b = randi (255, 50, 50);
## t = cputime (); fftconvn (a, b); cputime () -t
##    @result{} 1.2760
## a = randi (255, 2048-50+1, 2048-50+1);
## t = cputime (); fftconvn (a, b); cputime () -t
##    @result{} 1.2120
## a = randi (255, 2049-50+1, 2049-50+1);
## t = cputime (); fftconvn (a, b); cputime () -t
##    @result{} 6.1520
## a = randi (255, 4096-50+1, 4096-50+1);
## t = cputime (); fftconvn (a, b); cputime () -t
##    @result{} 6.2360
## a = randi (255, 4097-50+1, 4097-50+1);
## t = cputime (); fftconvn (a, b); cputime () -t
##    @result{} 38.120
## @end group
## @end example
##
## @seealso{convn, fftconv2, fftconv, padarray}
## @end deftypefn

function C = fftconvn (A, B, shape = "full")
  if (nargin < 2 || nargin > 3)
    print_usage ();
  elseif (! isnumeric (A) || ! isnumeric (B))
    error ("fftconvn: A and B must be numeric")
  endif

  nd = max (ndims (A), ndims (B));
  A_size = get_sizes (A, nd);
  B_size = get_sizes (B, nd);
  fft_size = 2 .^ nextpow2 (A_size + B_size - 1);

  C = ifftn (fftn (A, fft_size(1:ndims(A))) .* fftn (B, fft_size(1:ndims(B))));
  if (iscomplex (C) && isreal (A) && isreal (B))
    C = real (C);
  endif

  switch (tolower (shape))
    case "full"
      starts  = repmat (1, [1 nd]);
      ends    = A_size + B_size - 1;
    case "same"
      prepad  = floor (B_size / 2);
      starts  = prepad + 1;
      ends    = A_size + prepad;
    case "valid"
      starts  = B_size;
      ends    = A_size;
    otherwise
      error ("fftconvn: unknown SHAPE `%s'", shape);
  endswitch

  if (any (starts > 1) || any (ends != fft_size))
    idx = get_ndim_idx (starts, ends);
    C = C(idx{:});
  endif
endfunction

## returns the size of x but padded with 1 (singleton dimensions), to
## allow operations to be performed when the ndims do not match
function sizes = get_sizes (x, n)
  sizes = postpad (size (x), n, 1, 2);
endfunction

## starts and ends must have same length
function idx = get_ndim_idx (starts, ends)
  idx = arrayfun (@colon, starts, ends, "UniformOutput", false);
endfunction

%!function test_shapes (a, b, precision)
%!  shapes = {"valid", "same", "full"};
%!  for i = 1:3
%!    shape = shapes{i};
%!    assert (fftconvn (a, b, shape), convn (a, b, shape), precision);
%!  endfor
%!  assert (fftconvn (a, b), fftconvn (a, b, "full"));
%!endfunction

## simplest case
%!test test_shapes (randi (255, 100), randi (255, 10), 0.1)
%!test test_shapes (randi (255, 100, 100), randi (255, 10, 10), 0.1)
%!test test_shapes (randi (255, 100, 100, 100), randi (255, 10, 10, 10), 0.1)

## mix of number of dimensions
%!test test_shapes (randi (255, 100, 50, 20), randi (255, 10, 7), 0.1)
%!test test_shapes (randi (255, 100, 50, 20), randi (255, 10), 0.1)

## test near powers of 2 sizes
%!test
%! for s = [55 56 57 58]
%!   test_shapes (randi (255, 200, 200), randi (255, s, s), 0.1)
%! endfor
%!test
%! for s = [203 204 205 206]
%!   test_shapes (randi (255, s, s), randi (255, 52, 52), 0.1)
%! endfor

## test with other classes
%!test test_shapes (randi (255, 100, 100, "uint8"), randi (255, 10, 10, "uint8"), 0.1)
%!test test_shapes (randi (255, 100, 100, "uint8"), randi (255, 10, 10), 0.1)
%!test test_shapes (randi (255, 100, 100, "single"), randi (255, 10, 10, "single"), 0.9)
%!test test_shapes (randi (255, 100, 100, "single"), randi (255, 10, 10), 0.9)