/usr/share/octave/packages/image-2.6.1/fftconvn.m is in octave-image 2.6.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | ## Copyright (C) 2015 Carnë Draug <carandraug@octave.org>
##
## This program is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation; either version 3 of the
## License, or (at your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} fftconvn (@var{A}, @var{B})
## @deftypefnx {Function File} {} fftconvn (@var{A}, @var{B}, @var{shape})
## Convolve N dimensional signals using the FFT for computation.
##
## This function is equivalent to @code{convn} but using the FFT. It
## convolves the two N dimensional @var{A} and @var{B}. The size of
## output is controlled by the option @var{shape} which removes the
## borders where boundary effects may be seen:
##
## @table @asis
## @item @qcode{"full"} (default)
## Return the full convolution.
##
## @item @qcode{"same"}
## Return central part of the convolution with the same size as @var{A}.
##
## @item @qcode{"valid"}
## Return only the parts which do not include zero-padded edges.
##
## @end table
##
## Using the FFT may be faster but this is not always the case and can
## be a lot worse, specially for smalls @var{A} and @var{B}. This performance
## increase also comes at the cost of increased memory usage, as well as a loss
## of precision.
##
## @example
## @group
## a = randi (255, 1024, 1024);
## b = randi (255, 10, 10);
## t = cputime (); convn (a, b); cputime () -t
## @result{} 0.096000
## t = cputime (); fftconvn (a, b); cputime () -t
## @result{} 1.2560
##
## b = randi (255, 50, 50);
## t = cputime (); convn (a, b); cputime () -t
## @result{} 2.3400
## t = cputime (); fftconvn (a, b); cputime () -t
## @result{} 1.2560
## @end group
## @end example
##
## Note how computation time for @code{convn} increased with the size of
## @var{B} but remained constant when using @code{fftconvn}. When
## performing the convolution, @code{fftconvn} zero pads both @var{A} and
## @var{B} so their lengths are a power of two on all dimensions.
## This may further increase memory usage but will also increase
## performance. In this example, the computation time will remain constant
## until @code{size (@var{A}) + size (@var{B}) -1} is greater than 2048
## after which it will remain constant again until it reaches 4096.
##
## @example
## @group
## a = randi (255, 1024, 1024);
## b = randi (255, 50, 50);
## t = cputime (); fftconvn (a, b); cputime () -t
## @result{} 1.2760
## a = randi (255, 2048-50+1, 2048-50+1);
## t = cputime (); fftconvn (a, b); cputime () -t
## @result{} 1.2120
## a = randi (255, 2049-50+1, 2049-50+1);
## t = cputime (); fftconvn (a, b); cputime () -t
## @result{} 6.1520
## a = randi (255, 4096-50+1, 4096-50+1);
## t = cputime (); fftconvn (a, b); cputime () -t
## @result{} 6.2360
## a = randi (255, 4097-50+1, 4097-50+1);
## t = cputime (); fftconvn (a, b); cputime () -t
## @result{} 38.120
## @end group
## @end example
##
## @seealso{convn, fftconv2, fftconv, padarray}
## @end deftypefn
function C = fftconvn (A, B, shape = "full")
if (nargin < 2 || nargin > 3)
print_usage ();
elseif (! isnumeric (A) || ! isnumeric (B))
error ("fftconvn: A and B must be numeric")
endif
nd = max (ndims (A), ndims (B));
A_size = get_sizes (A, nd);
B_size = get_sizes (B, nd);
fft_size = 2 .^ nextpow2 (A_size + B_size - 1);
C = ifftn (fftn (A, fft_size(1:ndims(A))) .* fftn (B, fft_size(1:ndims(B))));
if (iscomplex (C) && isreal (A) && isreal (B))
C = real (C);
endif
switch (tolower (shape))
case "full"
starts = repmat (1, [1 nd]);
ends = A_size + B_size - 1;
case "same"
prepad = floor (B_size / 2);
starts = prepad + 1;
ends = A_size + prepad;
case "valid"
starts = B_size;
ends = A_size;
otherwise
error ("fftconvn: unknown SHAPE `%s'", shape);
endswitch
if (any (starts > 1) || any (ends != fft_size))
idx = get_ndim_idx (starts, ends);
C = C(idx{:});
endif
endfunction
## returns the size of x but padded with 1 (singleton dimensions), to
## allow operations to be performed when the ndims do not match
function sizes = get_sizes (x, n)
sizes = postpad (size (x), n, 1, 2);
endfunction
## starts and ends must have same length
function idx = get_ndim_idx (starts, ends)
idx = arrayfun (@colon, starts, ends, "UniformOutput", false);
endfunction
%!function test_shapes (a, b, precision)
%! shapes = {"valid", "same", "full"};
%! for i = 1:3
%! shape = shapes{i};
%! assert (fftconvn (a, b, shape), convn (a, b, shape), precision);
%! endfor
%! assert (fftconvn (a, b), fftconvn (a, b, "full"));
%!endfunction
## simplest case
%!test test_shapes (randi (255, 100), randi (255, 10), 0.1)
%!test test_shapes (randi (255, 100, 100), randi (255, 10, 10), 0.1)
%!test test_shapes (randi (255, 100, 100, 100), randi (255, 10, 10, 10), 0.1)
## mix of number of dimensions
%!test test_shapes (randi (255, 100, 50, 20), randi (255, 10, 7), 0.1)
%!test test_shapes (randi (255, 100, 50, 20), randi (255, 10), 0.1)
## test near powers of 2 sizes
%!test
%! for s = [55 56 57 58]
%! test_shapes (randi (255, 200, 200), randi (255, s, s), 0.1)
%! endfor
%!test
%! for s = [203 204 205 206]
%! test_shapes (randi (255, s, s), randi (255, 52, 52), 0.1)
%! endfor
## test with other classes
%!test test_shapes (randi (255, 100, 100, "uint8"), randi (255, 10, 10, "uint8"), 0.1)
%!test test_shapes (randi (255, 100, 100, "uint8"), randi (255, 10, 10), 0.1)
%!test test_shapes (randi (255, 100, 100, "single"), randi (255, 10, 10, "single"), 0.9)
%!test test_shapes (randi (255, 100, 100, "single"), randi (255, 10, 10), 0.9)
|