/usr/share/octave/packages/image-2.6.1/fspecial.m is in octave-image 2.6.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 | ## Copyright (C) 2005 Søren Hauberg <soren@hauberg.org>
## Copyright (C) 2015 Carnë Draug <carandraug@octave.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} fspecial (@var{type}, @dots{})
## Create spatial filters for image processing.
##
## @var{type} is a string specifying the filter name. The input arguments
## that follow are type specific. The return value is a correlation kernel,
## often to be used by @code{imfilter}.
##
## @seealso{conv2, convn, filter2, imfilter}
## @end deftypefn
##
## @deftypefn {Function File} {} fspecial ("average")
## @deftypefnx {Function File} {} fspecial ("average", @var{lengths})
## Rectangular averaging filter.
##
## The optional argument @var{lengths} controls the size of the filter.
## If @var{lengths} is an integer @var{N}, a @var{N} by @var{N}
## filter is created. If it is a two-vector with elements @var{N} and @var{M}, the
## resulting filter will be @var{N} by @var{M}. By default a 3 by 3 filter is
## created.
##
## @end deftypefn
##
## @deftypefn {Function File} {} fspecial ("disk")
## @deftypefnx {Function File} {} fspecial ("disk", @var{radius})
## Circular averaging filter.
##
## The optional argument @var{radius} controls the
## radius of the filter. If @var{radius} is an integer @var{R}, a 2 @var{R} + 1
## filter is created. By default a radius of 5 is used. If the returned matrix
## corresponds to a Cartesian grid, each element of the matrix is weighted by
## how much of the corresponding grid square is covered by a disk of radius
## @var{R} and centred at the middle of the element @var{R}+1,@var{R}+1.
##
## @end deftypefn
##
## @deftypefn {Function File} {} fspecial ("gaussian")
## @deftypefnx {Function File} {} fspecial ("gaussian", @var{lengths})
## @deftypefnx {Function File} {} fspecial ("gaussian", @var{lengths}, @var{sigma})
## Create Gaussian filter.
##
## Returns a N dimensional Gaussian distribution with standard
## deviation @var{sigma} and centred in an array of size @var{lengths}.
##
## @var{lengths} defaults to @code{[3 3]} and @var{sigma} to 0.5.
## If @var{lengths} is a scalar, it returns a square matrix of side
## @var{lengths}, .i.e., its value defines both the number of rows and
## columns.
##
## @end deftypefn
##
## @deftypefn {Function File} {} fspecial ("log")
## @deftypefnx {Function File} {} fspecial ("log", @var{lengths})
## @deftypefnx {Function File} {} fspecial ("log", @var{lengths}, @var{std})
## Laplacian of Gaussian.
##
## The optional argument @var{lengths} controls the size of the
## filter. If @var{lengths} is an integer @var{N}, a @var{N} by @var{N}
## filter is created. If it is a two-vector with elements @var{N} and @var{M}, the
## resulting filter will be @var{N} by @var{M}. By default a 5 by 5 filter is
## created. The optional argument @var{std} sets spread of the filter. By default
## a spread of @math{0.5} is used.
##
## @end deftypefn
##
## @deftypefn {Function File} {} fspecial ("laplacian")
## @deftypefnx {Function File} {} fspecial ("laplacian", @var{alpha})
## 3x3 approximation of the laplacian.
##
## The filter is approximated as
##
## @example
## (4/(@var{alpha}+1)) * [ @var{alpha}/4 (1-@var{alpha})/4 @var{alpha}/4
## (1-@var{alpha})/4 -1 (1-@var{alpha})/4
## @var{alpha}/4 (1-@var{alpha})/4 @var{alpha}/4 ];
## @end example
##
## where @var{alpha} is a number between 0 and 1. By default it is @math{0.2}.
##
## @end deftypefn
##
## @deftypefn {Function File} {} fspecial ("unsharp")
## @deftypefnx {Function File} {} fspecial ("unsharp", @var{alpha})
## Sharpening filter.
##
## The following filter is returned
## @example
## (1/(@var{alpha}+1)) * [-@var{alpha} @var{alpha}-1 -@var{alpha}
## @var{alpha}-1 @var{alpha}+5 @var{alpha}-1
## -@var{alpha} @var{alpha}-1 -@var{alpha}];
## @end example
##
## where @var{alpha} is a number between 0 and 1. By default it is @math{0.2}.
##
## @end deftypefn
##
## @deftypefn {Function File} {} fspecial ("motion")
## @deftypefnx {Function File} {} fspecial ("motion", @var{lengths})
## @deftypefnx {Function File} {} fspecial ("motion", @var{lengths}, @var{angle})
## Motion blur filter of width 1 pixel.
##
## The optional input argument @var{lengths}
## controls the length of the filter, which by default is 9. The argument @var{angle}
## controls the angle of the filter, which by default is 0 degrees.
##
## @end deftypefn
##
## @deftypefn {Function File} {} fspecial ("sobel")
## Horizontal Sobel edge filter.
##
## The following filter is returned
##
## @example
## [ 1 2 1
## 0 0 0
## -1 -2 -1 ]
## @end example
##
## @end deftypefn
##
## @deftypefn {Function File} {} fspecial ("prewitt")
## Horizontal Prewitt edge filter.
##
## The following filter is returned
##
## @example
## [ 1 1 1
## 0 0 0
## -1 -1 -1 ]
## @end example
##
## @end deftypefn
##
## @deftypefn {Function File} {} fspecial ("kirsch")
## Horizontal Kirsch edge filter.
##
## The following filter is returned
##
## @example
## [ 3 3 3
## 3 0 3
## -5 -5 -5 ]
## @end example
##
## @end deftypefn
## Remarks by Søren Hauberg (jan. 2nd 2007)
## The motion filter and most of the documentation was taken from Peter Kovesi's
## GPL'ed implementation of fspecial from
## http://www.csse.uwa.edu.au/~pk/research/matlabfns/OctaveCode/fspecial.m
function f = fspecial (type, arg1, arg2)
if (nargin < 1)
print_usage ();
endif
switch lower (type)
case "average"
## Get filtersize
if (nargin > 1 && isreal (arg1) && length (arg1 (:)) <= 2)
fsize = arg1 (:);
else
fsize = 3;
endif
## Create the filter
f = ones (fsize);
## Normalize the filter to integral 1
f = f / sum (f (:));
case "disk"
## Get the radius
if (nargin > 1 && isreal (arg1) && isscalar (arg1))
r = arg1;
else
r = 5;
endif
## Create the filter
if (r == 0)
f = 1;
else
ax = r + 1; # index of the "x-axis" and "y-axis"
corner = floor (r / sqrt (2)+0.5)-0.5; # corner corresponding to 45 degrees
rsq = r*r;
## First set values for points completely covered by the disk
[X, Y] = meshgrid (-r:r, -r:r);
rhi = (abs (X) +0.5).^2 + (abs (Y)+0.5).^2;
f = (rhi <= rsq) / 1.0;
xx = linspace (0.5, r - 0.5, r);
ii = sqrt (rsq - xx.^2); # intersection points for sqrt (r^2 - x^2)
## Set the values at the axis caps
tmp = sqrt (rsq -0.25);
rint = (0.5*tmp + rsq * atan (0.5/tmp))/2; # value of integral on the right
cap = 2*rint - r+0.5; # at the caps, lint = rint
f(ax ,ax+r) = cap;
f(ax ,ax-r) = cap;
f(ax+r,ax ) = cap;
f(ax-r,ax ) = cap;
if (r == 1)
y = ii(1);
lint = rint;
tmp = sqrt (rsq - y^2);
rint = (y*tmp + rsq * atan (y/tmp))/2;
val = rint - lint - 0.5 * (y-0.5);
f(ax-r,ax-r) = val;
f(ax+r,ax-r) = val;
f(ax-r,ax+r) = val;
f(ax+r,ax+r) = val;
else
## Set the values elsewhere on the rim
idx = 1; # index in the vector ii
x = 0.5; # bottom left corner of the current square
y = r-0.5;
rx = 0.5; # x on the right of the integrable region
ybreak = false; # did we change our y last time
do
i = x +0.5;
j = y +0.5;
lint = rint;
lx = rx;
if (ybreak)
ybreak = false;
val = lx-x;
idx++;
x++;
rx = x;
val -= y*(x-lx);
elseif (ii(idx+1) < y)
ybreak = true;
y--;
rx = ii(y+1.5);
val = (y+1) * (x-rx);
else
val = -y;
idx++;
x++;
rx = x;
if (floor (ii(idx)-0.5) == y)
y++;
endif
endif
tmp = sqrt (rsq - rx*rx);
rint = (rx*tmp + rsq * atan (rx/tmp))/2;
val += rint - lint;
f(ax+i, ax+j) = val;
f(ax+i, ax-j) = val;
f(ax-i, ax+j) = val;
f(ax-i, ax-j) = val;
f(ax+j, ax+i) = val;
f(ax+j, ax-i) = val;
f(ax-j, ax+i) = val;
f(ax-j, ax-i) = val;
until (y < corner || x > corner)
endif
# Normalize
f /= pi * rsq;
endif
case "gaussian"
## fspecial ("gaussian", lengths = [3 3], sigma = 0.5)
if (nargin < 2)
lengths = [3 3];
else
validateattributes (arg1, {"numeric"}, {">", 0, "integer"},
"fspecial (\"gaussian\")", "LENGTHS");
if (isempty (arg1))
error ("fspecial (\"gaussian\"): LENGTHS must not be empty");
elseif (numel (arg1) == 1)
lengths = [arg1 arg1];
else
lengths = arg1(:).';
endif
endif
if (nargin < 3)
sigma = 0.5;
else
## TODO add support for different sigmas for each dimension
validateattributes (arg2, {"numeric"}, {">", 0, "scalar"},
"fspecial (\"gaussian\")", "SIGMA");
sigma = arg2;
endif
lengths -= 1;
lengths /= 2;
pos = arrayfun ("colon", -lengths, lengths, "uniformoutput", false);
dist = 0;
for d = 1:numel(lengths)
dist = dist .+ (vec (pos{d}, d) .^2); # broadcasting with '.+=' does not work
endfor
f = exp (- (dist) / (2 * (sigma.^2)));
f /= sum (f(:));
case "laplacian"
## Get alpha
if (nargin > 1 && isscalar (arg1))
alpha = arg1;
if (alpha < 0 || alpha > 1)
error ("fspecial: second argument must be between 0 and 1");
endif
else
alpha = 0.2;
endif
## Compute filter
f = (4/(alpha+1))*[alpha/4, (1-alpha)/4, alpha/4; ...
(1-alpha)/4, -1, (1-alpha)/4; ...
alpha/4, (1-alpha)/4, alpha/4];
case "log"
## Get hsize
if (nargin > 1 && isreal (arg1))
if (length (arg1 (:)) == 1)
hsize = [arg1, arg1];
elseif (length (arg1 (:)) == 2)
hsize = arg1;
else
error ("fspecial: second argument must be a scalar or a vector of two scalars");
endif
else
hsize = [5, 5];
endif
## Get sigma
if (nargin > 2 && isreal (arg2) && length (arg2 (:)) == 1)
sigma = arg2;
else
sigma = 0.5;
endif
## Compute the filter
h1 = hsize (1)-1; h2 = hsize (2)-1;
[x, y] = meshgrid(0:h2, 0:h1);
x = x-h2/2; y = y = y-h1/2;
gauss = exp( -( x.^2 + y.^2 ) / (2*sigma^2) );
f = ( (x.^2 + y.^2 - 2*sigma^2).*gauss )/( 2*pi*sigma^6*sum(gauss(:)) );
case "motion"
## Taken (with some changes) from Peter Kovesis implementation
## (http://www.csse.uwa.edu.au/~pk/research/matlabfns/OctaveCode/fspecial.m)
## FIXME: The implementation is not quite matlab compatible.
if (nargin > 1 && isreal (arg1))
len = arg1;
else
len = 9;
endif
if (mod (len, 2) == 1)
sze = [len, len];
else
sze = [len+1, len+1];
end
if (nargin > 2 && isreal (arg2))
angle = arg2;
else
angle = 0;
endif
## First generate a horizontal line across the middle
f = zeros (sze);
f (floor (len/2)+1, 1:len) = 1;
# Then rotate to specified angle
f = imrotate (f, angle, "bilinear", "loose");
f = f / sum (f (:));
case "prewitt"
## The filter
f = [1, 1, 1; 0, 0, 0; -1, -1, -1];
case "sobel"
## The filter
f = [1, 2, 1; 0, 0, 0; -1, -2, -1];
case "kirsch"
## The filter
f = [3, 3, 3; 3, 0, 3; -5, -5, -5];
case "unsharp"
## Get alpha
if (nargin > 1 && isscalar (arg1))
alpha = arg1;
if (alpha < 0 || alpha > 1)
error ("fspecial: second argument must be between 0 and 1");
endif
else
alpha = 0.2;
endif
## Compute filter
f = (1/(alpha+1))*[-alpha, alpha-1, -alpha; ...
alpha-1, alpha+5, alpha-1; ...
-alpha, alpha-1, -alpha];
otherwise
error ("fspecial: filter type '%s' is not supported", type);
endswitch
endfunction
##
## Tests for disk shape
##
## Test that the disk filter's error does not grow unreasonably large
%!test
%! for i = 1:9
%! n = 2^i;
%! assert (sum (fspecial ("disk", n)(:)), 1, eps*n*n);
%! endfor
## Test that all squares completely under the disk or completely out of it are
## being assigned the correct values.
%!test
%! for r = [3 5 9 17]
%! f = fspecial ("disk", r);
%! [X, Y] = meshgrid (-r:r, -r:r);
%! rhi = (abs (X) + 0.5).^2 + (abs (Y) + 0.5).^2;
%! rlo = (abs (X) - 0.5).^2 + (abs (Y) - 0.5).^2;
%! fhi = (rhi <= (r^2));
%! flo = (rlo >= (r^2));
%! for i = 1:(2*r+1)
%! for j = 1:(2*r+1)
%! if (fhi(i,j))
%! assert (f(i,j), 1/(pi*r^2), eps);
%! endif
%! if (flo(i,j))
%! assert (f(i,j), 0);
%! endif
%! endfor
%! endfor
%! endfor
##
## Tests for gaussian shape
##
%!error <LENGTHS must be greater than 0>
%! fspecial ("gaussian", 0)
%!error <LENGTHS must be integer>
%! fspecial ("gaussian", 3.9)
%!assert (fspecial ("gaussian"), fspecial ("gaussian", 3, 0.5))
%!assert (fspecial ("gaussian"), fspecial ("gaussian", [3 3], 0.5))
%!test
%! c = ([-1:1].^2) .+ ([-1:1]'.^2);
%! gauss = exp (- (c ./ (2 * (0.5 .^ 2))));
%! f = gauss / sum (gauss(:));
%! assert (fspecial ("gaussian"), f)
%!
%! expected = [
%! 0.01134373655849507 0.08381950580221061 0.01134373655849507
%! 0.08381950580221061 0.61934703055717721 0.08381950580221061
%! 0.01134373655849507 0.08381950580221061 0.01134373655849507];
%! assert (f, expected, eps)
## An implementation of the function for 2d, we must also check it
## against some of the values. Note that hsize is (radius -1) and
## only works for odd lengths.
%!function f = f_gaussian_2d (hsize, sigma)
%! c = ([(-hsize(1)):(hsize(1))]'.^2) .+ ([(-hsize(2)):(hsize(2))].^2);
%! gauss = exp (- (c ./ (2 * (sigma .^ 2))));
%! f = gauss ./ sum (gauss(:));
%!endfunction
%!test
%! f = fspecial ("gaussian");
%! assert (f, f_gaussian_2d ([1 1], .5))
%! expected = [
%! 0.01134373655849507 0.08381950580221061 0.01134373655849507
%! 0.08381950580221061 0.61934703055717721 0.08381950580221061
%! 0.01134373655849507 0.08381950580221061 0.01134373655849507];
%! assert (f, expected, eps)
%!test
%! f = fspecial ("gaussian", 7, 2);
%! assert (f, f_gaussian_2d ([3 3], 2))
%! expected = [
%! 0.00492233115934352
%! 0.00919612528958620
%! 0.01338028334410124
%! 0.01516184737296414
%! 0.01338028334410124
%! 0.00919612528958620
%! 0.00492233115934352
%! 0.00919612528958620
%! 0.01718062389630964
%! 0.02499766026691484
%! 0.02832606006174462
%! 0.02499766026691484
%! 0.01718062389630964
%! 0.00919612528958620
%! 0.01338028334410124
%! 0.02499766026691484
%! 0.03637138107390363
%! 0.04121417419979795
%! 0.03637138107390363
%! 0.02499766026691484
%! 0.01338028334410124
%! 0.01516184737296414
%! 0.02832606006174462
%! 0.04121417419979795
%! 0.04670177773892775];
%! expected = reshape ([expected; expected((end-1):-1:1)], [7 7]);
%! assert (f, expected, eps)
%!test
%! f = fspecial ("gaussian", [7 5], 2);
%! assert (f, f_gaussian_2d ([3 2], 2))
%! expected = [
%! 0.01069713252648568
%! 0.01998487459872362
%! 0.02907782096336423
%! 0.03294948784319031
%! 0.02907782096336423
%! 0.01998487459872362
%! 0.01069713252648568
%! 0.01556423598706978
%! 0.02907782096336423
%! 0.04230797985750011
%! 0.04794122192790870
%! 0.04230797985750011
%! 0.02907782096336423
%! 0.01556423598706978
%! 0.01763658993191515
%! 0.03294948784319031
%! 0.04794122192790870
%! 0.05432452146574315];
%! expected = reshape ([expected; expected((end-1):-1:1)], [7 5]);
%! assert (f, expected, eps)
%!test
%! f = fspecial ("gaussian", [4 2], 2);
%! expected = [0.10945587477855045 0.14054412522144952];
%! expected = expected([1 1; 2 2; 2 2; 1 1]);
%! assert (f, expected, eps)
%!test
%! expected =[0.04792235409415088 0.06153352068439959 0.07901060453704994];
%! expected = expected([1 2 2 1; 2 3 3 2; 2 3 3 2; 1 2 2 1]);
%! assert (fspecial ("gaussian", 4, 2), expected)
%!function f = f_gaussian_3d (lengths, sigma)
%! [x, y, z] = ndgrid (-lengths(1):lengths(1), -lengths(2):lengths(2),
%! -lengths(3):lengths(3));
%! sig_22 = 2 * (sigma.^2);
%! f = exp (-((x.^2)/sig_22 + (y.^2)/sig_22 + (z.^2)/sig_22));
%! f = f / sum (f(:));
%!endfunction
%!test
%! obs = fspecial ("gaussian", [5 5 5]);
%! assert (obs, f_gaussian_3d ([2 2 2], .5))
%!
%! u_values = [
%! 0.00000000001837155
%! 0.00000000741161178
%! 0.00000005476481523
%! 0.00000299005759843
%! 0.00002209370333384
%! 0.00016325161336690
%! 0.00120627532940896
%! 0.00891323607975882
%! 0.06586040141635063
%! 0.48664620076350640];
%! expected = zeros (5, 5, 5);
%! expected([1 5 21 25 101 105 121 125]) = u_values(1);
%! expected([2 4 6 10 16 20 22 24 26 30 46 50 76 80 96 100 102 104 106 110 116 120 122 124]) = u_values(2);
%! expected([3 11 15 23 51 55 71 75 103 111 115 123]) = u_values(3);
%! expected([7 9 17 19 27 29 31 35 41 45 47 49 77 79 81 85 91 95 97 99 107 109 117 119]) = u_values(4);
%! expected([8 12 14 18 28 36 40 48 52 54 56 60 66 70 72 74 78 86 90 98 108 112 114 118]) = u_values(5);
%! expected([13 53 61 65 73 113]) = u_values(6);
%! expected([32 34 42 44 82 84 92 94]) = u_values(7);
%! expected([33 37 39 43 57 59 67 69 83 87 89 93]) = u_values(8);
%! expected([38 58 62 64 68 88]) = u_values(9);
%! expected([63]) = u_values(10);
%! assert (obs, expected, eps)
%!test
%! obs = fspecial ("gaussian", [5 5 5], 1);
%! assert (obs, f_gaussian_3d ([2 2 2], 1))
%!
%! u_values = [
%! 0.00016177781678373
%! 0.00072503787330278
%! 0.00119538536377748
%! 0.00324939431236223
%! 0.00535734551968363
%! 0.00883276951279243
%! 0.01456277497493249
%! 0.02400995686159072
%! 0.03958572658629712
%! 0.06526582943894763];
%! expected = zeros (5, 5, 5);
%! expected([1 5 21 25 101 105 121 125]) = u_values(1);
%! expected([2 4 6 10 16 20 22 24 26 30 46 50 76 80 96 100 102 104 106 110 116 120 122 124]) = u_values(2);
%! expected([3 11 15 23 51 55 71 75 103 111 115 123]) = u_values(3);
%! expected([7 9 17 19 27 29 31 35 41 45 47 49 77 79 81 85 91 95 97 99 107 109 117 119]) = u_values(4);
%! expected([8 12 14 18 28 36 40 48 52 54 56 60 66 70 72 74 78 86 90 98 108 112 114 118]) = u_values(5);
%! expected([13 53 61 65 73 113]) = u_values(6);
%! expected([32 34 42 44 82 84 92 94]) = u_values(7);
%! expected([33 37 39 43 57 59 67 69 83 87 89 93]) = u_values(8);
%! expected([38 58 62 64 68 88]) = u_values(9);
%! expected([63]) = u_values(10);
%! assert (obs, expected, eps)
%!test
%! obs = fspecial ("gaussian", [3 4 1 5], 3);
%! assert (find (obs == max (obs(:))), [29; 32])
%! assert (size (obs), [3 4 1 5])
%! assert (obs(:)(1:30), obs(:)(end:-1:31))
|