This file is indexed.

/usr/share/octave/packages/image-2.6.1/imadjust.m is in octave-image 2.6.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
## Copyright (C) 1999,2000 Kai Habel <kai.habel@gmx.de>
## Copyright (C) 2004 Josep Monés i Teixidor <jmones@puntbarra.com>
## Copyright (C) 2015 Carnë Draug <carandraug@octave.org>
## Copyright (C) 2015 Hartmut Gimpel <hg_code@gmx.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} imadjust (@var{I})
## @deftypefnx {Function File} {} imadjust (@var{I}, [@var{low_in}; @var{high_in}])
## @deftypefnx {Function File} {} imadjust (@var{I}, [@var{low_in}; @var{high_in}],[@var{low_out}; @var{high_out}])
## @deftypefnx {Function File} {} imadjust (@dots{}, @var{gamma})
## @deftypefnx {Function File} {} imadjust (@var{cmap}, @dots{})
## @deftypefnx {Function File} {} imadjust (@var{RGB}, @dots{})
## Adjust image or colormap intensity (values).
##
## Returns an image of equal dimensions to @var{I}, @var{cmap}, or
## @var{RGB}, with its intensity values adjusted, usually for the
## purpose of increasing the image contrast.
##
## The values are rescaled according to the input and output limits,
## @var{low_in} and @var{high_in}, and @var{low_out} and @var{high_out}
## respectively.  The first pair sets the lower and upper limits
## on the input image, values above and below them being clipped.
## The second pair sets the lower and upper limits for the output
## image, the interval to which the image will be scaled after
## clipping the input limits.
##
## For example:
##
## @example
## imadjust (img, [0.2; 0.9], [0; 1])
## @end example
##
## will clip all values in @var{img} outside the range [0.2 0.9],
## and then rescale them linearly into the range [0 1].
##
## The input and output limits must be defined as arrays of 2 rows
## with values in the [0 1] range.  Each 2 rows column corresponds
## to a single plane in the input image (or each column of a
## colormap), thus supporting images with any number of dimensions.
## If the limits have only 2 elements, the same limits are on all planes.
## This format is matched to @code{stretchlim} which is designed
## to create the input limits for @code{imadjust}.
##
## By default, the limits are adjusted to maximize the contrast, using
## the whole range of values in the image class; and cause a 2%
## saturation (1% on the lower and upper end of the image).  It is
## equivalent to:
##
## @example
## imadjust (@var{I}, stretchlim (@var{I}, 0.01), [0; 1])
## @end example
##
## A common usage is to maximize the display range without saturation:
##
## @example
## imadjust (img, stretchlim (img, 0)) # adjustment performed per plane
## imadjust (img, stretchlim (img(:), 0)) # equal adjustment to all planes
## @end example
##
## For sake of @sc{Matab} compatibility, an empty array in any of
## the limits is interpreted as @code{[0; 1]}.
##
## If @var{low_out} is higher than @var{high_out}, the output image
## will be reversed (image negative or complement).
##
## The @var{gamma} value shapes the mapping curve between the input
## and output elements.  It defaults to 1, a linear mapping.  Higher
## values of @var{gamma} will curve the mapping downwards and to the right,
## increasing the contrast in the brighter (higher) values of the
## input image.  Lower values of @var{gamma} will curve the mapping
## upwards and to the left, increasing the contrast in the darker (lower)
## values of the input image.
##
## As with the limits, @var{gamma} can have different values for each
## plane, a 1 row column per plane, thus supporting input images with
## any number of dimensions.  If only a scalar, the same value is used
## in all planes.
##
## The formula used to perform the mapping (omitting saturation) is:
##
## @example
## low_out + (high_out - low_out) .* ((I - low_in) / (high_in - low_in)) .^ gamma
## @end example
##
## @seealso{brighten, contrast, histeq, stretchlim}
## @end deftypefn

function adj = imadjust (img, in, out = [0; 1], gamma = 1)

  if (nargin () < 1 || nargin () > 4)
    print_usage ();
  endif

  if (! isimage (img))
    error ("imadjust: I, RGB, or CMAP must be an image or a colormap");
  elseif (! isnumeric (img))
    ## isimage() allows for boolean images which imadjust should not
    error ("imadjust: I, RGB, or CMAP must be numeric");
  endif

  sz = size (img);
  if (iscolormap (img))
    was_colormap = true;
    img = reshape (img, [sz(1) 1 sz(2)]);
    sz = size (img);
  else
    was_colormap = false;
  endif
  n_planes = prod (sz(3:end));


  if (nargin () < 2)
    in = stretchlim (img, 0.01);
  else
    in = parse_limits (in, sz);
  endif
  out = parse_limits (out, sz);

  if (! isfloat (gamma) || any (gamma < 0))
    error ("imadjust: GAMMA must be a non-negative floating point")
  elseif (isscalar (gamma))
    gamma = repmat (gamma, [1 n_planes]);
  elseif (! isequal (size (gamma)(2:end), sz(3:end)))
    error ("imadjust: GAMMA must be a scalar or 1 row per plane")
  endif

  if (isfloat (img))
    ## To make the computations in N dimensions, we make heavy use of
    ## broadcasting so reshape to have a single value per plane.
    in = reshape (in, [2 1 sz(3:end)]);
    out = reshape (out, [2 1 sz(3:end)]);
    gamma = reshape (gamma, [1 1 sz(3:end)]);
    adj = imadjust_direct (img, in, out, gamma);

  else # must be integer
    ## We create a LUT and use intlut instead of a simply converting the
    ## whole image to single or double.  This is mainly for memory
    ## efficiency but also less computationally intensive.  Do not
    ## forget that in scientific images, 500MB uint8 images are not
    ## uncommon so we don't want to convert them to double.

    cls = class(img);
    lut = linspace (0, 1, double (intmax (cls)) - double (intmin (cls)) + 1);

    ## If there's a single plane or the adjustment are all the same,
    ## we only need to create one LUT.
    if (n_planes == 1 || (all ((in(:,:) == in(:,1))(:))
                          && all ((out(:,:) == out(:,1))(:))
                          && all (gamma == gamma(1))))
      lut = imadjust_direct (lut, in(:,1), out(:,1), gamma(1));
      adj = intlut (img, imcast (lut, cls));
    else
      ## Seems like we have different adjustments for each plane.  We could
      ## be smarter than loop over each plane.  We could check the unique
      ## adjustment configurations and loop over them instead.  However,
      ## I'll guess that if the adjustments are not all equal, they are
      ## likely all different too so this is simpler.
      adj = zeros (size (img), cls);
      for i = 1:n_planes
        lut_adj = imadjust (lut, in(:,i), out(:,i), gamma(i));
        adj(:,:,i) = intlut (img(:,:,i), imcast (lut_adj, cls));
      endfor
    endif

  endif

  if (was_colormap)
    adj = reshape (adj, [sz(1) sz(3)]);
  endif

endfunction

function limits = parse_limits (limits, sz)
  if (isempty (limits))
    limits = repmat ([0; 1], [1 sz(3:end)]);
  else
    if (! isfloat (limits))
      error ("imadjust: IN and OUT must be numeric floating-point arrays");
    elseif (min (limits(:)) < 0 || max (limits(:)) > 1)
      error ("imadjust: IN and OUT must be on the range [0 1]");
    endif
    ## Only reshape back into 2 row column for a single plane.
    ## Require the correct format otherwise.
    if (numel (limits) == 2)
      limits = repmat (limits(:), [1 sz(3:end)]);
    elseif (rows (limits) != 2 || ! isequal (sz(3:end), size (limits)(2:end)))
      error ("imadjust: IN and OUT must be a 2 row column per plane");
    endif
  endif
endfunction

## The code that actually does imadjust without any input checking and
## reshaping.  So we can call it from imadjust when we know things are good.
function adj = imadjust_direct (img, in, out, gamma)
  max_scale = all ((out == [0; 1])(:));
  max_scale_complement = all ((out == [1; 0])(:));

  lo_idx = [1 repmat({":"}, 1, ndims (in))];
  hi_idx = [2 repmat({":"}, 1, ndims (in))];

  li = in(lo_idx{:});
  hi = in(hi_idx{:});

  if (max_scale)
    ## This is the most common case.  Used to stretch all the values
    ## into the [0 1], which can be computed much more efficiently.
    adj = ((img .- li) ./ (hi - li)) .^ gamma;
    adj(adj > 1) = 1;
    adj(adj < 0) = 0;
  elseif (max_scale_complement)
    adj = ((img .- li) ./ (hi - li)) .^ gamma;
    adj = 1 - adj;
    adj(adj > 1) = 1;
    adj(adj < 0) = 0;

  else # this covers all cases but may be slower than needed
    lo = out(lo_idx{:});
    ho = out(hi_idx{:});

    ## Image negative is computed if ho < lo although nothing special is
    ## needed, since formula automatically handles it.
    adj = (img < li) .* lo;
    adj += (img >= li & img < hi) .* (lo + (ho - lo) .* ((img - li) ./ (hi - li)) .^ gamma);
    adj += (img >= hi) .* ho;
  endif
endfunction

%!error <must be an image or a colormap> imadjust ("bad argument");
%!error <numeric floating-point arrays> imadjust ([1:100], "bad argument", [], 1);
%!error <2 row column per plane> imadjust ([1:100], [0 1 1], [], 1);
%!error <2 row column per plane> imadjust ([1:100], [], [0 1 1], 1);
%!error <scalar or 1 row per plane> imadjust ([1:100], [], [], [0; 1]);
%!error <scalar or 1 row per plane> imadjust (rand (5, 5, 3), [], [], [0 1]);
%!error <non-negative floating point> imadjust ([1:100], [0; 1], [], -1);
%!error <be on the range \[0 1]> imadjust ([1:100], [0; 5], []);
%!error <be on the range \[0 1]> imadjust ([1:100], [-2; 1], []);
%!error <be on the range \[0 1]> imadjust ([1:100], [], [0; 4]);
%!error <be on the range \[0 1]> imadjust ([1:100], [], [-2; 1]);
%!error <must be numeric> imadjust (rand (5) > .5);


## Test default values to 1% on each end saturated and [] as [0; 1]
%!test
%! im = [0.01:0.01:1];
%! assert (imadjust (im), [0 linspace(0, 1, 98) 1], eps)
%! assert (imadjust (im), imadjust (im, stretchlim (im, 0.01), [0; 1], 1))
%! assert (imadjust (im, []), imadjust (im, [0; 1], [0; 1], 1))
%! assert (imadjust (im, [], []), imadjust (im, [0; 1], [0; 1], 1))
%! assert (imadjust (im, [], [.25 .75]), imadjust (im, [0; 1], [.25; .75], 1))
%! assert (imadjust (im, [.25; .75], []), imadjust (im, [.25; .75], [0; 1], 1))

%!assert (imadjust (linspace (0, 1), [], [.25 .75]), linspace (.25, .75, 100))

## test with only input arg
%!assert (imadjust (linspace (0, 1, 100),[1/99; 98/99]),
%!        [0 linspace(0, 1, 98) 1], eps)

%!shared cm
%! cm = [[0:8]' [1:9]' [2:10]'] / 10;

## a colormap
%!assert (imadjust (cm, [0; 1], [0.5; 1]), (cm /2) + .5)
## with params in row
%!assert (imadjust (cm, [0 1], [0.5 1]), (cm /2) + .5)

## a colormap, different output adjustment on each channel
%!assert (imadjust (cm, [0; 1], [.1 .2 .3; .7 .8 .9]),
%!        (cm*.6) .+ [.1 .2 .3], eps)

## a colormap, different input adjustment on each channel
%!assert (imadjust (cm, [.2 .4 .6; .7 .8 .9], [0; 1]),
%!       [[0 0 linspace(0, 1, 6) 1]' ...
%!        [0 0 0 linspace(0, 1, 5) 1]' ...
%!        [0 0 0 0 linspace(0, 1, 4) 1]'], eps)

### a colormap, different input and output on each
%!assert (imadjust (cm, [.2 .4 .6; .7 .8 .9], [0 .1 .2; .8 .9 1]),
%!        [[0 0 linspace(0, .8, 6) .8]' ...
%!         [.1 .1 .1 linspace(.1, .9, 5) .9]' ...
%!         [.2 .2 .2 .2 linspace(.2, 1, 4) 1]'], eps)

## a colormap, different gamma, input and output on each
%!assert (imadjust (cm, [.2 .4 .6; .7 .8 .9], [0 .1 .2; .8 .9 1], [0.5 1 2]),
%!        [[0 0 0 (((([.3 .4 .5 .6]-.2)/.5).^.5)*.8) .8 .8]' ...
%!         [.1 .1 .1 linspace(.1, .9, 5) .9]' ...
%!         [.2 .2 .2 .2 .2  ((((([.7 .8]-.6)/.3).^2).*.8)+.2) 1 1]'], eps*10)

## Handling values outside the [0 1] range
%!test
%! im = [-0.4:.1:0.8
%!        0.0:.1:1.2
%!        0.1:.1:1.3
%!       -0.4:.2:2.0];
%!
%! ## just clipping
%! assert (imadjust (im, [0; 1], [0; 1]),
%!         [0 0 0 0 (0:.1:.8)
%!          (0:.1:1) 1 1
%!          (.1:.1:1) 1 1 1
%!          0 0 (0:.2:1) 1 1 1 1 1], eps)
%!
%! ## clipping and invert
%! assert (imadjust (im, [0; 1], [1; 0]),
%!         [1 1 1 1 (1:-.1:.2)
%!          (1:-.1:0) 0 0
%!          (.9:-.1:0) 0 0 0
%!          1 1 (1:-.2:0) 0 0 0 0 0], eps)
%!
%! ## rescale
%! assert (imadjust (im, [.2; .7], [.1; .9]),
%!         [1 1 1 1 1 1 1 2.6 4.2 5.8 7.4 9 9
%!          1 1 1 2.6 4.2 5.8 7.4 9 9 9 9 9 9
%!          1 1 2.6 4.2 5.8 7.4 9 9 9 9 9 9 9
%!          1 1 1 1 4.2 7.4 9 9 9 9 9 9 9]/10, eps)
%!
%! ## rescale and invert
%! assert (imadjust (im, [.2; .7], [.9; .1]),
%!         [9 9 9 9 9 9 9 7.4 5.8 4.2 2.6 1 1
%!          9 9 9 7.4 5.8 4.2 2.6 1 1 1 1 1 1
%!          9 9 7.4 5.8 4.2 2.6 1 1 1 1 1 1 1
%!          9 9 9 9 5.8 2.6 1 1 1 1 1 1 1]/10, eps)

## adjusting only the gamma and nothing else
%!assert (imadjust (linspace (0, 1), [], [], 2), linspace (0, 1) .^ 2)


%!shared oRGB
%! oRGB = zeros (10, 1, 3);
%! oRGB(:,:,1) = [0 linspace(0,1,6) 1 1 1]';
%! oRGB(:,:,2) = [0 0 linspace(0,1,6) 1 1]';
%! oRGB(:,:,3) = [0 0 0 linspace(0,1,6) 1]';

%!assert (imadjust (oRGB, [0; 1], [0; 1]), oRGB)

%!assert (imadjust (oRGB, [.2; .8], [0; 1]),
%!        reshape ([[0 0 0 1/3 2/3 1 1 1 1 1]'
%!                  [0 0 0 0 1/3 2/3 1 1 1 1]'
%!                  [0 0 0 0 0 1/3 2/3 1 1 1]'], [10 1 3]), eps)

%!assert (imadjust (oRGB, [.2; .8], [.1; .9]),
%!        reshape ([[.1 .1 .1 (1/3)+(.1/3) (2/3)-(.1/3) .9 .9 .9 .9 .9]'
%!                  [.1 .1 .1 .1 (1/3)+(.1/3) (2/3)-(.1/3) .9 .9 .9 .9]'
%!                  [.1 .1 .1 .1 .1 (1/3)+(.1/3) (2/3)-(.1/3) .9 .9 .9]'],
%!                 [10 1 3]), eps)

%!assert (imadjust (oRGB, [.2; .8], [.2; .8]),
%!        reshape ([[2 2 2 4 6 8 8 8 8 8]'
%!                  [2 2 2 2 4 6 8 8 8 8]'
%!                  [2 2 2 2 2 4 6 8 8 8]']/10, [10 1 3]), eps)

## aRGB, different output for each channel
%!assert (imadjust (oRGB, [0; 1], [.1 .2 .3; .9 .8 .7]),
%!        reshape ([[1 1 2.6 4.2 5.8 7.4 9 9 9 9]'
%!                  [2 2 2 3.2 4.4 5.6 6.8 8 8 8]'
%!                  [3 3 3 3 3.8 4.6 5.4 6.2 7 7]']/10, [10 1 3]), eps)

## a RGB, different input for each channel
%!assert (imadjust (oRGB, [.1 .2 .3; .9 .8 .7], [0; 1]),
%!        reshape ([[0 0 .125 .375 .625 .875 1 1 1 1]'
%!                  [0 0 0 0 1/3 2/3 1 1 1 1]'
%!                  [0 0 0 0 0 .25 .75 1 1 1]'], [10 1 3]), eps*10)

## a RGB, different input and output on each
%!assert (imadjust (oRGB, [.1 .2 .3; .9 .8 .7], [.2 0 .4; .5 1 .7 ]),
%!        reshape ([[.2 .2 .2375 .3125 .3875 .4625 .5 .5 .5 .5]'
%!                  [0 0 0 0 1/3 2/3 1 1 1 1]'
%!                  [.4 .4 .4 .4 .4 .475 .625 .7 .7 .7]'], [10 1 3]), eps)


## Test for ND dimensional images
%!test
%! img = rand (4, 4, 2, 3, 4);
%! adj = zeros (4, 4, 2, 3, 4);
%! for p = 1:2
%!   for q = 1:3
%!     for r = 1:4
%!       adj(:,:,p,q,r) = imadjust (img(:,:,p,q,r));
%!     endfor
%!   endfor
%! endfor
%! assert (imadjust (img), adj)

## Test for ND dimensional images with N dimensional arguments
%!test
%! img = rand (4, 4, 2, 3, 2);
%! adj = zeros (4, 4, 2, 3, 2);
%! in  = reshape ([ 3  5  7  9 11 13 15 17 19 21 23 25;
%!                 97 95 93 91 89 87 85 83 81 79 77 75] / 100, [2 2 3 2]);
%! out = reshape ([ 5  7  9 11 14 15 17 19 21 23 25 27;
%!                 95 93 91 89 87 85 83 81 79 77 75 73] / 100, [2 2 3 2]);
%! gamma = reshape (0.6:.1:1.7, [1 2 3 2]);
%! for p = 1:2
%!   for q = 1:3
%!     for r = 1:2
%!       adj(:,:,p,q,r) = imadjust (img(:,:,p,q,r), in(:,p,q,r),
%!                                  out(:,p,q,r), gamma(1,p,q,r));
%!     endfor
%!   endfor
%! endfor
%! assert (imadjust (img, in, out, gamma), adj)

## Test how empty matrix is not really the default value
%!test
%! in = int16 (1:6);
%! assert (imadjust (in), int16 ([-32768 -19661  -6554   6553  19660  32767]))
%! assert (imadjust (in, []), in)

##
## Test images of integer class
##

%!test
%! in = uint8([
%!  35   1   6  26  19  24
%!   3  32   7  21  23  25
%!  31   9   2  22  27  20
%!   8  28  33  17  10  15
%!  30   5  34  12  14  16
%!   4  36  29  13  18  11]);
%! out = uint8([
%!  12   0   0   1   0   0
%!   0   8   0   0   0   0
%!   7   0   0   0   2   0
%!   0   3   9   0   0   0
%!   6   0  11   0   0   0
%!   0  13   4   0   0   0]);
%! assert (imadjust (in, [.1 .9], [0 1]), out);

%!test
%! in = uint8([
%!  140    4   24  104   76   96
%!   12  128   28   84   92  100
%!  124   36    8   88  108   80
%!   32  112  132   68   40   60
%!  120   20  136   48   56   64
%!   16  144  116   52   72   44]);
%! out = uint8([
%!  143    0    0   98   63   88
%!    0  128    3   73   83   93
%!  123   13    0   78  103   68
%!    8  108  133   53   18   43
%!  118    0  138   28   38   48
%!    0  148  113   33   58   23]);
%! assert (imadjust (in, [.1 .9], [0 1]), out);

%!test
%! in_u8 = randi ([0 255], 5, 5, 2, 3, "uint8");
%! in_u16 = randi ([0 65535], 5, 5, 2, 3, "uint16");
%! in_i16 = randi ([-32768 32767], 5, 5, 2, 3, "int16");
%! in_u8_d = im2double (in_u8);
%! in_u16_d = im2double (in_u16);
%! in_i16_d = im2double (in_i16);
%!
%! ## default values
%! assert (imadjust (in_u8), im2uint8 (imadjust (in_u8_d)))
%! assert (imadjust (in_u16), im2uint16 (imadjust (in_u16_d)))
%! assert (imadjust (in_i16), im2int16 (imadjust (in_i16_d)))
%!
%! ## single adjustment for all planes
%! args = {[.3; .7], [.1; .9], [1.5]};
%! assert (imadjust (in_u8, args{:}), im2uint8 (imadjust (in_u8_d, args{:})))
%! assert (imadjust (in_u16, args{:}), im2uint16 (imadjust (in_u16_d, args{:})))
%! assert (imadjust (in_i16, args{:}), im2int16 (imadjust (in_i16_d, args{:})))
%!
%! ## single adjustment for all planes (mixed with some complement)
%! args = {reshape([.2 .3 .25 .1 0 .1; .9 .7 .85 .9 1 .8], [2 2 3]),
%!         reshape([.1 .2 .05 .9 1 .3; .9 .85 .7 .1 0 .9], [2 2 3]),
%!         reshape([1 .75 1 1.2 1.5 2], [1 2 3])};
%! assert (imadjust (in_u8, args{:}), im2uint8 (imadjust (in_u8_d, args{:})))
%! assert (imadjust (in_u16, args{:}), im2uint16 (imadjust (in_u16_d, args{:})))
%! assert (imadjust (in_i16, args{:}), im2int16 (imadjust (in_i16_d, args{:})))
%!
%! ## test use of [] as limit and negative
%! args = {[], [.95; 0], 1.25};
%! assert (imadjust (in_u8, args{:}), im2uint8 (imadjust (in_u8_d, args{:})))
%! assert (imadjust (in_u16, args{:}), im2uint16 (imadjust (in_u16_d, args{:})))
%! assert (imadjust (in_i16, args{:}), im2int16 (imadjust (in_i16_d, args{:})))