/usr/share/octave/packages/image-2.6.1/imcrop.m is in octave-image 2.6.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | ## Copyright (C) 2014-2015 Carnë Draug <carandraug@octave.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} imcrop ()
## @deftypefnx {Function File} {} imcrop (@var{img})
## @deftypefnx {Function File} {} imcrop (@var{ind}, @var{cmap})
## @deftypefnx {Function File} {} imcrop (@var{h})
## @deftypefnx {Function File} {} imcrop (@dots{}, @var{rect})
## @deftypefnx {Function File} {[@var{cropped}] =} imcrop (@dots{})
## @deftypefnx {Function File} {[@var{cropped}, @var{rect}] =} imcrop (@dots{})
## @deftypefnx {Function File} {[@var{x}, @var{y}, @var{cropped}, @var{rect}] =} imcrop (@dots{})
## Crop image.
##
## Displays the image @var{img} in a figure window and waits for the user to
## select two points defining a bounding box. For an indexed image, a
## corresponding colormap can be specified in @var{cmap}. For multi-dimensional
## images (each 2D image is concatenated in the 4th dimension), only the
## first image is displayed.
##
## If no image data is given, uses the current figure or figure from graphics
## handle @var{h}.
##
## Non-interactive usage is supported if the last input argument is 4 element
## vector @var{rect} defining the region of interest. The first two elements
## specify the initial @var{x_ini} and @var{y_ini} coordinates, and the last
## two the @var{width} and @var{height}, i.e.,
## @code{@var{rect} = [@var{x_ini} @var{y_ini} @var{width} @var{height}]}.
## Note how this the opposite of the majority of Octave indexing rules where
## rows come before columns.
##
## Returns the @var{cropped} image and a vector @var{rect} with the
## coordinates and size for @var{cropped}. If more than 3 output arguments
## are requested, also returns the @var{x} and @var{y} data that define
## the coordinate system.
##
## @emph{Note}: the values in @var{rect} are not necessarily integer values
## and can't always be used directly as index values for other images. To
## crop the same region from a multiple images of the same size, either using
## a multi-dimensional image:
##
## @example
## @group
## nd_img = cat (4, img1, img2, img3, img4);
## cropped = imcrop (nd_img);
## cropped_1 = cropped(:,:,:,1);
## cropped_2 = cropped(:,:,:,2);
## cropped_3 = cropped(:,:,:,3);
## cropped_4 = cropped(:,:,:,4);
## @end group
## @end example
##
## or multiple calls to @code{imcrop}:
##
## @example
## @group
## [cropped_1, rect] = imcrop (img1);
## cropped_2 = imcrop (img2, rect);
## cropped_3 = imcrop (img3, rect);
## cropped_4 = imcrop (img4, rect);
## @end group
## @end example
##
## @seealso{impixel, imshow}
## @end deftypefn
## TODO not yet implemented
## @deftypefnx {Function File} {} imcrop (@var{xData}, @var{yData}, @dots{})
function varargout = imcrop (varargin)
## Screw Matlab and their over complicated API's! How can we properly
## parse all the possible alternative calls? See
## http://www.youtube.com/watch?v=1oZWacjmYm8 to understand how such
## API's develop.
## There is no check for this things, anything is valid. We (Octave)
## are at least checking the number of elements otherwise the input
## parsing would be horrible.
valid_rect = @(x) numel (x) == 4;
valid_system = @(x) numel (x) == 2;
rect = [];
interactive = true; # is interactive usage
alt_system = false; # was an alternative coordinate system requested?
from_fig = false; # do we have the image data or need to fetch from figure?
if (nargin > 5)
print_usage ();
endif
rect = [];
if (numel (varargin) > 1 && valid_rect (varargin{end}))
interactive = false;
rect = varargin{end};
varargin(end) = [];
endif
xdata = [];
ydata = [];
if (numel (varargin) > 2 && valid_system (varargin{1}) && valid_system (varargin{2}))
## requested messy stuff
## we should probably reuse part of what impixel does
alt_system = true;
xdata = varargin{1};
ydata = varargin{2};
varargin([1 2]) = [];
error ("imcrop: messing around with coordinate system is not implemented");
endif
## After we remove all that extra stuff, we are left with the image
fnargin = numel (varargin);
if (fnargin > 2)
print_usage ();
elseif (fnargin == 0)
## use current figure
from_fig = true;
h = gcf ();
## We check isscalar() because ishandle() accepts arrays of handles, and we
## check "!= 0" because 0 is and handle for the "root figure" which is
## invalid for imcrop (see bug #42714).
elseif (fnargin == 1 && isscalar (varargin{1})
&& varargin{1} != 0 && ishandle (varargin{1}))
## use specified figure
from_fig = true;
h = varargin{1};
elseif (interactive)
## leave input check to imshow
h = nd_imshow (varargin{:});
elseif (isimage (varargin{1}))
## we have the image data and it's not interactive, so there is
## nothing to do. We only check the minimum in the image.
else
print_usage ();
endif
if (from_fig)
hax = get (h, "currentaxes");
himage = findobj (hax, "type", "image");
if (! isempty (himage))
himage = himage(1);
else
error ("imcrop: expect the current axes to contain an image")
endif
cdata = get (himage, "cdata");
xdata = get (himage, "xdata");
ydata = get (himage, "ydata");
else
cdata = varargin{1};
if (! alt_system)
xdata = [1 columns(cdata)];
ydata = [1 rows(cdata)];
endif
endif
## Finally, crop the image
if (interactive)
[x, y] = ginput (2);
if (x(2) < x(1))
[x(1), x(2)] = deal (x(2), x(1));
endif
if (y(2) < y(1))
[y(1), y(2)] = deal (y(2), y(1));
endif
rect = [x(1) y(1) x(2)-x(1) y(2)-y(1)];
endif
i_ini = round ([rect(1) rect(2)]);
i_end = round ([rect(1)+rect(3) rect(2)+rect(4)]);
img = cdata(i_ini(2):i_end(2), i_ini(1):i_end(1),:,:); # don't forget RGB and ND images
## Even the API for the output is complicated
if (nargout == 0 && interactive)
figure ();
## In case we have a colormap or something like that, use
## it again when displaying the cropped image.
nd_imshow (img, varargin{2:end});
elseif (nargout < 3)
varargout{1} = img;
varargout{2} = rect;
else
varargout{1} = xdata;
varargout{2} = ydata;
varargout{3} = img;
varargout{4} = rect;
endif
endfunction
## shadows core function to support ND image. If we have one, use
## the first frame only
function h = nd_imshow (varargin)
size (varargin{1});
h = imshow (varargin{1}(:,:,:,1), varargin{2:end});
endfunction
## test typical non-interactive usage, grayscale image
%!test
%! a = randi (255, [100 100]);
%! rect = [20 30 3 5];
%! assert (nthargout ([1 2], @imcrop, a, rect), {a(30:35, 20:23) rect});
%! assert (nthargout (2, @imcrop, a, rect), rect);
%! assert (nthargout ([3 4], 4, @imcrop, a, rect), {a(30:35, 20:23) rect});
## test typical non-interactive usage, RGB image
%!test
%! rgb = randi (255, [100 100 3]);
%! rect = [20 30 3 5];
%! assert (nthargout ([1 2], @imcrop, rgb, rect), {rgb(30:35, 20:23,:) rect});
%! assert (nthargout (2, @imcrop, rgb, rect), rect);
%! assert (nthargout ([3 4], 4, @imcrop, rgb, rect), {rgb(30:35, 20:23,:) rect});
## test typical non-interactive usage, indexed image
%!test
%! a = randi (255, [100 100]);
%! rect = [20 30 3 5];
%! cmap = jet (255);
%! assert (nthargout ([1 2], @imcrop, a, cmap, rect), {a(30:35, 20:23) rect});
%! assert (nthargout (2, @imcrop, a, cmap, rect), rect);
%! assert (nthargout ([3 4], 4, @imcrop, a, cmap, rect), {a(30:35, 20:23) rect});
## test typical non-interactive usage, logical image
%!test
%! a = rand (100) > 0.5;
%! rect = [20 30 3 5];
%! assert (nthargout ([1 2], @imcrop, a, rect), {a(30:35, 20:23) rect});
%! assert (nthargout (2, @imcrop, a, rect), rect);
%! assert (nthargout ([3 4], 4, @imcrop, a, rect), {a(30:35, 20:23) rect});
## 0 is the root figure (always true figure handle), so make sure we use
## scalar 0 as image data, not as figure handle.
%!assert (imcrop (0, [0.5 0.5 0.9 0.9]), 0);
%!assert (imcrop (zeros (5), [1 1 1 1]), zeros (2));
|