/usr/share/octave/packages/image-2.6.1/imnoise.m is in octave-image 2.6.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | ## Copyright (C) 2000 Paul Kienzle <pkienzle@users.sf.net>
## Copyright (C) 2004 Stefan van der Walt <stefan@sun.ac.za>
## Copyright (C) 2012 Carlo de Falco
## Copyright (C) 2012 Carnë Draug <carandraug@octave.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} imnoise (@var{A}, @var{type})
## @deftypefnx {Function File} {} imnoise (@dots{}, @var{options})
## Add noise to image.
##
## @end deftypefn
## @deftypefn {Function File} {} imnoise (@var{A}, "gaussian", @var{mean}, @var{variance})
## Additive gaussian noise with @var{mean} and @var{variance} defaulting to 0
## and 0.01.
##
## @end deftypefn
## @deftypefn {Function File} {} imnoise (@var{A}, "poisson")
## Creates poisson noise in the image using the intensity value of each pixel as
## mean.
##
## @end deftypefn
## @deftypefn {Function File} {} imnoise (@var{A}, "salt & pepper", @var{density})
## Create "salt and pepper"/"lost pixels" in @var{density}*100 percent of the
## image. @var{density} defaults to 0.05.
##
## @end deftypefn
## @deftypefn {Function File} {} imnoise (@var{A}, "speckle", @var{variance})
## Multiplicative gaussian noise with @var{B} = @var{A} + @var{A} * noise with
## mean 0 and @var{variance} defaulting to 0.04.
##
## @seealso{rand, randn, randp}
## @end deftypefn
function A = imnoise (A, stype, a, b)
## we do not set defaults right at the start because they are different
## depending on the method used to generate noise
if (nargin < 2 || nargin > 4)
print_usage;
elseif (! isimage (A))
error ("imnoise: first argument must be an image.");
elseif (! ischar (stype))
error ("imnoise: second argument must be a string with name of noise type.");
endif
in_class = class (A);
fix_class = false; # for cases when we need to use im2double
switch (lower (stype))
case "poisson"
switch (in_class)
case ("double")
A = randp (A * 1e12) / 1e12;
case ("single")
A = single (randp (A * 1e6) / 1e6);
case {"uint8", "uint16"}
A = cast (randp (A), in_class);
otherwise
A = imnoise (im2double (A), "poisson");
fix_class = true;
endswitch
case "gaussian"
A = im2double (A);
fix_class = true;
if (nargin < 3), a = 0.00; endif
if (nargin < 4), b = 0.01; endif
A = A + (a + randn (size (A)) * sqrt (b));
## Variance of Gaussian data with mean 0 is E[X^2]
case {"salt & pepper", "salt and pepper"}
if (nargin < 3), a = 0.05; endif
noise = rand (size (A));
if (isfloat (A))
black = 0;
white = 1;
else
black = intmin (in_class);
white = intmax (in_class);
endif
A(noise <= a/2) = black;
A(noise >= 1-a/2) = white;
case "speckle"
A = im2double (A);
fix_class = true;
if (nargin < 3), a = 0.04; endif
A = A .* (1 + randn (size (A)) * sqrt (a));
otherwise
error ("imnoise: unknown or unimplemented type of noise `%s'", stype);
endswitch
if (fix_class)
A = imcast (A, in_class);
elseif (isfloat (A))
## this includes not even cases where the noise made it go outside of the
## [0 1] range, but also images that were already originally outside that
## range. This is by design and matlab compatibility. And we do this after
## fixing class because the imcast functions already take care of such
## adjustment
A(A < 0) = cast (0, class (A));
A(A > 1) = cast (1, class (A));
endif
endfunction
%!assert(var(imnoise(ones(10)/2,'gaussian')(:)),0.01,0.005) # probabilistic
%!assert(length(find(imnoise(ones(10)/2,'salt & pepper')~=0.5)),5,10) # probabilistic
%!assert(var(imnoise(ones(10)/2,'speckle')(:)),0.01,0.005) # probabilistic
%!test
%! A = imnoise (.5 * ones (100), 'poisson');
%! assert (class (A), 'double')
%!test
%! A = imnoise (.5 * ones (100, 'single'), 'poisson');
%! assert (class (A), 'single')
%!test
%! A = imnoise (128 * ones (100, 'uint8'), 'poisson');
%! assert (class (A), 'uint8')
%!test
%! A = imnoise (256 * ones (100, 'uint16'), 'poisson');
%! assert (class (A), 'uint16')
%!demo
%! A = imnoise (2^7 * ones (100, 'uint8'), 'poisson');
%! subplot (2, 2, 1)
%! imshow (A)
%! title ('uint8 image with poisson noise')
%! A = imnoise (2^15 * ones (100, 'uint16'), 'poisson');
%! subplot (2, 2, 2)
%! imshow (A)
%! title ('uint16 image with poisson noise')
%! A = imnoise (.5 * ones (100), 'poisson');
%! subplot (2, 2, 3)
%! imshow (A)
%! title ('double image with poisson noise')
%! A = imnoise (.5 * ones (100, 'single'), 'poisson');
%! subplot (2, 2, 4)
%! imshow (A)
%! title ('single image with poisson noise')
|