This file is indexed.

/usr/share/octave/packages/image-2.6.1/imperspectivewarp.m is in octave-image 2.6.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
## Copyright (C) 2006 Søren Hauberg <soren@hauberg.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} @var{warped} = imperspectivewarp(@var{im}, @var{P}, @var{interp}, @var{bbox}, @var{extrapval})
## @deftypefnx{Function File} [@var{warped}, @var{valid}] = imperspectivewarp(@dots{})
## Applies the spatial perspective homogeneous transformation @var{P} to the image @var{im}.
## The transformation matrix @var{P} must be a 3x3 homogeneous matrix, or 2x2 or 2x3
## affine transformation matrix.
## 
## The optional argument @var{method} defines the interpolation method to be
## used.  All methods supported by @code{interp2} can be used.  By default, the
## @code{linear} method is used.
##
## For @sc{matlab} compatibility, the methods @code{bicubic} (same as
## @code{cubic}), @code{bilinear} and @code{triangle} (both the same as
## @code{linear}) are also supported.
##
## By default the resulting image contains the entire warped image. In some situation
## you only parts of the warped image. The argument @var{bbox} controls this, and can
## be one of the following strings
## @table @code
## @item "loose"
## The entire warped result is returned. This is the default behavior.
## @item "crop"
## The central part of the image of the same size as the input image is returned.
## @item "same"
## The size and coordinate system, of the input image, are kept.
## @end table
##
## All values of the result that fall outside the original image will
## be set to @var{extrapval}.  The default value of @var{extrapval} is 0.
##
## The optional output @var{valid} is a matrix of the same size as @var{warped}
## that contains the value 1 in pixels where @var{warped} contains an interpolated
## value, and 0 in pixels where @var{warped} contains an extrapolated value.
## @seealso{imremap, imrotate, imresize, imshear, interp2}
## @end deftypefn

function [warped, valid] = imperspectivewarp(im, P, interp = "linear", bbox = "loose", extrapolation_value = 0)

  if (nargin < 2 || nargin > 5)
    print_usage ();
  elseif (! isimage (im))
    error ("imperspectivewarp: IM must be a grayscale or RGB image.")
  elseif (! ischar (interp))
    error ("imperspectivewarp: INTERP must be a string with interpolation method")
  elseif (! ischar (bbox) || ! any (strcmpi (bbox, {"loose", "crop", "same"})))
    error ("imperspectivewarp: BBOX must be 'loose', 'crop' or 'same'");
  elseif (! isscalar (extrapolation_value))
    error ("imperspectivewarp: EXTRAPVAL must be a scalar");
  endif
  interp = interp_method (interp);
  
  if (isnumeric (P) && ismatrix (P))
    if (issquare(P) && rows(P) == 3) # 3x3 matrix
      if (P(3,3) != 0)
        P /= P(3,3);
      else
        error ("imperspectivewarp: P(3,3) must be non-zero");
      endif
    elseif (rows(P) == 2 && (columns(P) == 2 || columns(P) == 3)) # 2x2 or 2x3 matrix
      P(3,3) = 1;
    else # unsupported matrix size
      error ("imperspectivewarp: transformation matrix must be 2x2, 2x3, or 3x3");
    endif
  else
    error ("imperspectivewarp: transformation matrix not valid");
  endif
  
  ## Do the transformation
  [y, x, tmp] = size(im);
  ## Transform corners
  corners = [1, 1, 1;
             1, y, 1;
             x, 1, 1;
             x, y, 1]';
  Tcorners = P*corners;
  Tx = Tcorners(1,:)./Tcorners(3,:);
  Ty = Tcorners(2,:)./Tcorners(3,:);

  ## Do cropping?
  x1 = round(min(Tx)); x2 = round(max(Tx));
  y1 = round(min(Ty)); y2 = round(max(Ty));
  # FIXME: This seems to work fine for rotations, but
  # somebody who knows computational geometry should
  # be able to come up with a better algorithm.
  if (strcmpi(bbox, "crop"))
    xl = x2 - x1 + 1;
    yl = y2 - y1 + 1;
    xd = (xl - x)/2;
    yd = (yl - y)/2;
    x1 += xd; x2 -= xd;
    y1 += yd; y2 -= yd;
  elseif (strcmpi(bbox, "same"))
    x1 = 1; x2 = x;
    y1 = 1; y2 = y;
  endif
 
  ## Transform coordinates
  [X, Y] = meshgrid(x1:x2, y1:y2);
  [sy, sx] = size(X);
  D = [X(:), Y(:), ones(sx*sy, 1)]';
  PD = inv(P)*D;
  XI = PD(1,:)./PD(3,:);
  YI = PD(2,:)./PD(3,:);
  XI = reshape(XI, sy, sx);
  YI = reshape(YI, sy, sx);

  clear X Y D PD;
  
  [warped, valid] = imremap (im, XI, YI, interp, extrapolation_value);

endfunction

%!demo
%! ## Generate a synthetic image and show it
%! I = tril(ones(100)) + abs(rand(100)); I(I>1) = 1;
%! I(20:30, 20:30) = !I(20:30, 20:30);
%! I(70:80, 70:80) = !I(70:80, 70:80);
%! figure(), imshow(I);
%! ## Resize the image to the double size and show it
%! P = diag([1, 1, 0.5]);
%! warped = imperspectivewarp(I, P);
%! figure(), imshow(warped);

%!demo
%! ## Generate a synthetic image and show it
%! I = tril(ones(100)) + abs(rand(100)); I(I>1) = 1;
%! I(20:30, 20:30) = !I(20:30, 20:30);
%! I(70:80, 70:80) = !I(70:80, 70:80);
%! figure(), imshow(I);
%! ## Rotate the image around (0, 0) by -0.4 radians and show it
%! R = [cos(-0.4) sin(-0.4); -sin(-0.4) cos(-0.4)];
%! warped = imperspectivewarp(I, R, :, :, 0);
%! figure(), imshow(warped);