/usr/share/octave/packages/image-2.6.1/imrotate.m is in octave-image 2.6.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | ## Copyright (C) 2002 Jeff Orchard <jorchard@cs.uwaterloo.ca>
## Copyright (C) 2004-2005 Justus H. Piater <Justus.Piater@ULg.ac.be>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} imrotate (@var{imgPre}, @var{theta}, @var{method}, @var{bbox}, @var{extrapval})
## Rotate image about its center.
##
## Input parameters:
##
## @var{imgPre} a gray-level image matrix
##
## @var{theta} the rotation angle in degrees counterclockwise
##
## The optional argument @var{method} defines the interpolation method to be
## used. All methods supported by @code{interp2} can be used. In addition,
## Fourier interpolation by decomposing the rotation matrix into 3 shears can
## be used with the @code{fourier} method. By default, the @code{nearest} method
## is used.
##
## For @sc{matlab} compatibility, the methods @code{bicubic} (same as
## @code{cubic}), @code{bilinear} and @code{triangle} (both the same as
## @code{linear}) are also supported.
##
## @var{bbox}
## @itemize @w
## @item "loose" grows the image to accommodate the rotated image (default).
## @item "crop" rotates the image about its center, clipping any part of the image that is moved outside its boundaries.
## @end itemize
##
## @var{extrapval} sets the value used for extrapolation. The default value
## is 0. This argument is ignored of Fourier interpolation is used.
##
## Output parameters:
##
## @var{imgPost} the rotated image matrix
##
## @var{H} the homography mapping original to rotated pixel
## coordinates. To map a coordinate vector c = [x;y] to its
## rotated location, compute round((@var{H} * [c; 1])(1:2)).
##
## @var{valid} a binary matrix describing which pixels are valid,
## and which pixels are extrapolated. This output is
## not available if Fourier interpolation is used.
## @end deftypefn
function [imgPost, H, valid] = imrotate (imgPre, thetaDeg, interp = "nearest", bbox = "loose", extrapval = 0)
if (nargin < 2 || nargin > 5)
print_usage ();
elseif (! isimage (imgPre))
error ("imrotate: IMGPRE must be a grayscale or RGB image.")
elseif (! isscalar (thetaDeg))
error("imrotate: THETA must be a scalar");
elseif (! ischar (interp))
error("imrotate: interpolation METHOD must be a character array");
elseif (! isscalar (extrapval))
error("imrotate: EXTRAPVAL must be a scalar");
elseif (! ischar (bbox) || ! any (strcmpi (bbox, {"loose", "crop"})))
error("imrotate: BBOX must be 'loose' or 'crop'");
endif
interp = interp_method (interp);
## Input checking done. Start working
thetaDeg = mod(thetaDeg, 360); # some code below relies on positive angles
theta = thetaDeg * pi/180;
sizePre = size(imgPre);
## We think in x,y coordinates here (rather than row,column), except
## for size... variables that follow the usual size() convention. The
## coordinate system is aligned with the pixel centers.
R = [cos(theta) sin(theta); -sin(theta) cos(theta)];
if (nargin >= 4 && strcmpi(bbox, "crop"))
sizePost = sizePre;
else
## Compute new size by projecting zero-base image corner pixel
## coordinates through the rotation:
corners = [0, 0;
(R * [sizePre(2) - 1; 0 ])';
(R * [sizePre(2) - 1; sizePre(1) - 1])';
(R * [0 ; sizePre(1) - 1])' ];
sizePost(2) = round(max(corners(:,1)) - min(corners(:,1))) + 1;
sizePost(1) = round(max(corners(:,2)) - min(corners(:,2))) + 1;
## This size computation yields perfect results for 0-degree (mod
## 90) rotations and, together with the computation of the center of
## rotation below, yields an image whose corresponding region is
## identical to "crop". However, we may lose a boundary of a
## fractional pixel for general angles.
endif
## Compute the center of rotation and the translational part of the
## homography:
oPre = ([ sizePre(2); sizePre(1)] + 1) / 2;
oPost = ([sizePost(2); sizePost(1)] + 1) / 2;
T = oPost - R * oPre; # translation part of the homography
## And here is the homography mapping old to new coordinates:
H = [[R; 0 0] [T; 1]];
## Treat trivial rotations specially (multiples of 90 degrees):
if (mod(thetaDeg, 90) == 0)
nRot90 = mod(thetaDeg, 360) / 90;
if (mod(thetaDeg, 180) == 0 || sizePre(1) == sizePre(2) ||
strcmpi(bbox, "loose"))
imgPost = rotdim (imgPre, nRot90, [1 2]);
return;
elseif (mod(sizePre(1), 2) == mod(sizePre(2), 2))
## Here, bbox is "crop" and the rotation angle is +/- 90 degrees.
## This works only if the image dimensions are of equal parity.
imgRot = rotdim (imgPre, nRot90, [1 2]);
imgPost = zeros(sizePre);
hw = min(sizePre) / 2 - 0.5;
imgPost (round(oPost(2) - hw) : round(oPost(2) + hw),
round(oPost(1) - hw) : round(oPost(1) + hw) ) = ...
imgRot(round(oPost(1) - hw) : round(oPost(1) + hw),
round(oPost(2) - hw) : round(oPost(2) + hw) );
return;
else
## Here, bbox is "crop", the rotation angle is +/- 90 degrees, and
## the image dimensions are of unequal parity. This case cannot
## correctly be handled by rot90() because the image square to be
## cropped does not align with the pixels - we must interpolate. A
## caller who wants to avoid this should ensure that the image
## dimensions are of equal parity.
endif
endif
## Now the actual rotations happen
if (strcmpi (interp, "fourier"))
in_class = class (imgPre);
imgPre = im2double (imgPre);
if (isgray(imgPre))
imgPost = imrotate_Fourier(imgPre, thetaDeg, interp, bbox);
else # rgb image
for i = 3:-1:1
imgPost(:,:,i) = imrotate_Fourier(imgPre(:,:,i), thetaDeg, interp, bbox);
endfor
endif
valid = NA;
imgPost = imcast (imgPost, in_class);
else
[imgPost, valid] = imperspectivewarp(imgPre, H, interp, bbox, extrapval);
endif
endfunction
function fs = imrotate_Fourier (f, theta, method, bbox)
# Get original dimensions.
[ydim_orig, xdim_orig] = size(f);
# This finds the index coords of the centre of the image (indices are base-1)
# eg. if xdim_orig=8, then xcentre_orig=4.5 (half-way between 1 and 8)
xcentre_orig = (xdim_orig+1) / 2;
ycentre_orig = (ydim_orig+1) / 2;
# Pre-process the angle ===========================================================
# Whichever 90 degree multiple theta is closest to, that multiple of 90 will
# be implemented by rot90. The remainder will be done by shears.
# This ensures that 0 <= theta < 360.
theta = rem( rem(theta,360) + 360, 360 );
# This is a flag to keep track of 90-degree rotations.
perp = 0;
if ( theta>=0 && theta<=45 )
phi = theta;
elseif ( theta>45 && theta<=135 )
phi = theta - 90;
f = rotdim(f,1, [1 2]);
perp = 1;
elseif ( theta>135 && theta<=225 )
phi = theta - 180;
f = rotdim(f,2, [1 2]);
elseif ( theta>225 && theta<=315 )
phi = theta - 270;
f = rotdim(f,3, [1 2]);
perp = 1;
else
phi = theta;
endif
if ( phi == 0 )
fs = f;
if ( strcmp(bbox,"loose") == 1 )
return;
else
xmax = xcentre_orig;
ymax = ycentre_orig;
if ( perp == 1 )
xmax = max([xmax ycentre_orig]);
ymax = max([ymax xcentre_orig]);
[ydim xdim] = size(fs);
xpad = ceil( xmax - (xdim+1)/2 );
ypad = ceil( ymax - (ydim+1)/2 );
fs = padarray (fs, [ypad xpad]);
endif
xcentre_new = (size(fs,2)+1) / 2;
ycentre_new = (size(fs,1)+1) / 2;
endif
else
# At this point, we can assume -45<theta<45 (degrees)
phi = phi * pi / 180;
theta = theta * pi / 180;
R = [ cos(theta) -sin(theta) ; sin(theta) cos(theta) ];
# Find max of each dimension... this will be expanded for "loose" and "crop"
xmax = xcentre_orig;
ymax = ycentre_orig;
# If we don't want wrapping, we have to zeropad.
# Cropping will be done later, if necessary.
if ( strcmp(bbox, "wrap") == 0 )
corners = ( [ xdim_orig xdim_orig -xdim_orig -xdim_orig ; ydim_orig -ydim_orig ydim_orig -ydim_orig ] + 1 )/ 2;
rot_corners = R * corners;
xmax = max([xmax rot_corners(1,:)]);
ymax = max([ymax rot_corners(2,:)]);
# If we are doing a 90-degree rotation first, we need to make sure our
# image is large enough to hold the rot90 image as well.
if ( perp == 1 )
xmax = max([xmax ycentre_orig]);
ymax = max([ymax xcentre_orig]);
endif
[ydim xdim] = size(f);
xpad = ceil( xmax - xdim/2 );
ypad = ceil( ymax - ydim/2 );
%f = padarray (f, [ypad xpad]);
xcentre_new = (size(f,2)+1) / 2;
ycentre_new = (size(f,1)+1) / 2;
endif
S1 = S2 = eye (2);
S1(1,2) = -tan(phi/2);
S2(2,1) = sin(phi);
f1 = imshear(f, 'x', S1(1,2), 'loose');
f2 = imshear(f1, 'y', S2(2,1), 'loose');
fs = real( imshear(f2, 'x', S1(1,2), 'loose') );
%fs = f2;
xcentre_new = (size(fs,2)+1) / 2;
ycentre_new = (size(fs,1)+1) / 2;
endif
if ( strcmp(bbox, "crop") == 1 )
# Crop to original dimensions
x1 = ceil (xcentre_new - xdim_orig/2);
y1 = ceil (ycentre_new - ydim_orig/2);
fs = fs (y1:(y1+ydim_orig-1), x1:(x1+xdim_orig-1));
elseif ( strcmp(bbox, "loose") == 1 )
# Find tight bounds on size of rotated image
# These should all be positive, or 0.
xmax_loose = ceil( xcentre_new + max(rot_corners(1,:)) );
xmin_loose = floor( xcentre_new - max(rot_corners(1,:)) );
ymax_loose = ceil( ycentre_new + max(rot_corners(2,:)) );
ymin_loose = floor( ycentre_new - max(rot_corners(2,:)) );
fs = fs( (ymin_loose+1):(ymax_loose-1) , (xmin_loose+1):(xmax_loose-1) );
endif
## Prevent overshooting
if (strcmp(class(f), "double"))
fs(fs>1) = 1;
fs(fs<0) = 0;
endif
endfunction
#%!test
#%! ## Verify minimal loss across six rotations that add up to 360 +/- 1 deg.:
#%! methods = { "nearest", "bilinear", "bicubic", "Fourier" };
#%! angles = [ 59 60 61 ];
#%! tolerances = [ 7.4 8.5 8.6 # nearest
#%! 3.5 3.1 3.5 # bilinear
#%! 2.7 2.0 2.7 # bicubic
#%! 2.7 1.6 2.8 ]/8; # Fourier
#%!
#%! # This is peaks(50) without the dependency on the plot package
#%! x = y = linspace(-3,3,50);
#%! [X,Y] = meshgrid(x,y);
#%! x = 3*(1-X).^2.*exp(-X.^2 - (Y+1).^2) ...
#%! - 10*(X/5 - X.^3 - Y.^5).*exp(-X.^2-Y.^2) ...
#%! - 1/3*exp(-(X+1).^2 - Y.^2);
#%!
#%! x -= min(x(:)); # Fourier does not handle neg. values well
#%! x = x./max(x(:));
#%! for m = 1:(length(methods))
#%! y = x;
#%! for i = 1:5
#%! y = imrotate(y, 60, methods{m}, "crop", 0);
#%! end
#%! for a = 1:(length(angles))
#%! assert(norm((x - imrotate(y, angles(a), methods{m}, "crop", 0))
#%! (10:40, 10:40)) < tolerances(m,a));
#%! end
#%! end
#%!xtest
#%! ## Verify exactness of near-90 and 90-degree rotations:
#%! X = rand(99);
#%! for angle = [90 180 270]
#%! for da = [-0.1 0.1]
#%! Y = imrotate(X, angle + da , "nearest", :, 0);
#%! Z = imrotate(Y, -(angle + da), "nearest", :, 0);
#%! assert(norm(X - Z) == 0); # exact zero-sum rotation
#%! assert(norm(Y - imrotate(X, angle, "nearest", :, 0)) == 0); # near zero-sum
#%! end
#%! end
#%!test
#%! ## Verify preserved pixel density:
#%! methods = { "nearest", "bilinear", "bicubic", "Fourier" };
#%! ## This test does not seem to do justice to the Fourier method...:
#%! tolerances = [ 4 2.2 2.0 209 ];
#%! range = 3:9:100;
#%! for m = 1:(length(methods))
#%! t = [];
#%! for n = range
#%! t(end + 1) = sum(imrotate(eye(n), 20, methods{m}, :, 0)(:));
#%! end
#%! assert(t, range, tolerances(m));
#%! end
%!test
%! a = reshape (1:18, [2 3 3]);
%!
%! a90(:,:,1) = [5 6; 3 4; 1 2];
%! a90(:,:,2) = a90(:,:,1) + 6;
%! a90(:,:,3) = a90(:,:,2) + 6;
%!
%! a180(:,:,1) = [6 4 2; 5 3 1];
%! a180(:,:,2) = a180(:,:,1) + 6;
%! a180(:,:,3) = a180(:,:,2) + 6;
%!
%! am90(:,:,1) = [2 1; 4 3; 6 5];
%! am90(:,:,2) = am90(:,:,1) + 6;
%! am90(:,:,3) = am90(:,:,2) + 6;
%!
%! assert (imrotate (a, 0), a);
%! assert (imrotate (a, 90), a90);
%! assert (imrotate (a, -90), am90);
%! assert (imrotate (a, 180), a180);
%! assert (imrotate (a, -180), a180);
%! assert (imrotate (a, 270), am90);
%! assert (imrotate (a, -270), a90);
%! assert (imrotate (a, 360), a);
|