/usr/share/octave/packages/image-2.6.1/lab2xyz.m is in octave-image 2.6.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | ## Copyright (C) 2015 Hartmut Gimpel
##
## This program is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation; either version 3 of the
## License, or (at your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see
## <http:##www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{xyz} =} lab2xyz (@var{lab})
## @deftypefnx {Function File} {@var{xyz_map} =} lab2xyz (@var{lab_map})
## Transform a colormap or image from CIE L*a*b* to CIE XYZ color space.
##
## A color in the CIE L*a*b* (or CIE Lab) space consists of lightness L* and
## two color-opponent dimensions a* and b*. The whitepoint is taken as D65.
## The CIE L*a*b* colorspace is a colorimetric colorspace, meaning that their values
## do not depend on the display device hardware. This colorspace is designed
## to incorporate the human perception of color differences.
##
## A color in the CIE XYZ color space consists of three values X, Y and Z.
## Those values are also designed to be colorimetric.
##
## Input values of class single and double are accepted.
## The shape and the class of the input are conserved.
##
## The input values of L* are normally in the inteval [0, 100]
## and the values of a* and b* in the interval [-127, 127].
##
## @seealso{xyz2lab, rgb2lab, rgb2hsv, rgb2ind, rgb2ntsc}
## @end deftypefn
## Author: Hartmut Gimpel <hg_code@gmx.de>
## algorithm taken from the following book:
## Burger, Burge "Digitale Bildverarbeitung", 3rd edition (2015)
function xyz = lab2xyz (lab)
if (nargin != 1)
print_usage ();
endif
[lab, cls, sz, is_im, is_nd, is_int] ...
= colorspace_conversion_input_check ("lab2xyz", "Lab", lab, 1);
# currently only accept single and double inputs (as Matlab does)
# (Integer types would be possible, but would need an explanation in the
# help text how to scale them.)
## use the whitepoint D65 (reference: en.wikipedia.org/wiki/Illuminant_D65)
D65 = [0.95047, 1, 1.08883];
# Matlab truncates to D65_Matlab = [0.9504, 1.0000, 1.0888];
## transformation Lab -> XYZ
L = lab(:,1);
a = lab(:,2);
b = lab(:,3);
L_prime = (L + 16) ./ 116;
x = D65(1) .* f (L_prime + a./500);
y = D65(2) .* f (L_prime);
z = D65(3) .* f (L_prime - b./200);
xyz = [x, y, z];
# always return values of type double for Matlab compatibility (exception: type single)
xyz = colorspace_conversion_revert (xyz, cls, sz, is_im, is_nd, is_int, 1);
endfunction
function out = f (in)
epsilon = (6/29)^3;
kappa = 1/116 * (29/3)^3;
out = in;
mask = in.^3 > epsilon;
out(mask) = in(mask).^3;
out(! mask) = (in(! mask) - 16/116)./kappa;
endfunction
## Test pure colors, gray and some other colors
## (This set of test values is taken from the book by Burger.)
%!assert (lab2xyz ([0, 0, 0]), [0 0 0], 1e-3)
%!assert (lab2xyz ([53.24, 80.09, 67.20]), [0.4125, 0.2127, 0.0193], 1e-3)
%!assert (lab2xyz ([97.14, -21.55, 94.48]), [0.7700, 0.9278, 0.1385], 1e-3)
%!assert (lab2xyz ([87.74, -86.18, 83.18]), [0.3576, 0.7152, 0.1192], 1e-3)
%!assert (lab2xyz ([91.11, -48.09, -14.13]), [0.5380, 0.7873, 1.0694], 1e-3)
%!assert (lab2xyz ([32.30, 79.19, -107.86]), [0.1804, 0.07217, 0.9502], 1e-3)
%!assert (lab2xyz ([60.32, 98.24, -60.83]), [0.5929, 0.28484, 0.9696], 1e-3)
%!assert (lab2xyz ([100, 0.00, 0.00]), [0.9505, 1.0000, 1.0888], 1e-3)
%!assert (lab2xyz ([53.39, 0.00, 0.00]), [0.2034, 0.2140, 0.2330], 1e-3)
%!assert (lab2xyz ([39.77, 64.51, 54.13]), [0.2155, 0.1111, 0.0101], 1e-3)
%!assert (lab2xyz ([25.42, 47.91, 37.91]), [0.0883, 0.0455, 0.0041], 1e-3)
%!assert (lab2xyz ([9.66, 29.68, 15.24]), [0.02094, 0.0108, 0.00098], 1e-3)
%!assert (lab2xyz ([68.11, 48.39, 22.83]), [0.5276, 0.3812, 0.2482], 1e-3)
## Test tolarant input checking on floats
%!assert (lab2xyz ([150 130 130]), [4.596, 2.931, 0.519], 1e-3)
%!test
%! lab_map = rand (64, 3);
%! lab_map(:,1) = lab_map(:,1) .* 100;
%! lab_map(:,2) = lab_map(:,2) .* 254 - 127;
%! lab_map(:,3) = lab_map(:,3) .* 254 - 127;
%! assert (xyz2lab (lab2xyz (lab_map)), lab_map, 1e-5);
%!test
%! lab_img = rand (64, 64, 3);
%! lab_img(:,:,1) = lab_img(:,:,1) .* 100;
%! lab_img(:,:,2) = lab_img(:,:,2) .* 254 - 127;
%! lab_img(:,:,3) = lab_img(:,:,3) .* 254 - 127;
%! assert (xyz2lab (lab2xyz (lab_img)), lab_img, 1e-5);
## support sparse input
%!assert (lab2xyz (sparse ([0 0 0])), [0 0 0], 1e-3)
%!assert (lab2xyz (sparse ([100, 0.00, 0.00])), [0.9505, 1.0000, 1.0888], 1e-3)
## conserve class of single input
%!assert (class (lab2xyz (single([50 50 50]))), 'single')
## Test input validation
%!error lab2xyz ()
%!error lab2xyz (1,2)
%!error <invalid data type 'cell'> lab2xyz ({1})
%!error <Lab must be a colormap or Lab image> lab2xyz (ones (2,2))
## Test ND input
%!test
%! lab = rand (16, 16, 3, 5);
%! lab(:,:,1,:) = lab(:,:,1,:) .* 100;
%! lab(:,:,2,:) = lab(:,:,2,:) .* 254 - 127;
%! lab(:,:,3,:) = lab(:,:,3,:) .* 254 - 127;
%! xyz = zeros (size (lab));
%! for i = 1:5
%! xyz(:,:,:,i) = lab2xyz (lab(:,:,:,i));
%! endfor
%! assert (lab2xyz (lab), xyz)
|