/usr/share/octave/packages/image-2.6.1/regionprops.m is in octave-image 2.6.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 | ## Copyright (C) 2010 Søren Hauberg <soren@hauberg.org>
## Copyright (C) 2012 Jordi Gutiérrez Hermoso <jordigh@octave.org>
## Copyright (C) 2015 Hartmut Gimpel <hg_code@gmx.de>
## Copyright (C) 2015 Carnë Draug <carandraug@octave.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} regionprops (@var{BW})
## @deftypefnx {Function File} {} regionprops (@var{L})
## @deftypefnx {Function File} {} regionprops (@var{CC})
## @deftypefnx {Function File} {} regionprops (@dots{}, @var{properties})
## @deftypefnx {Function File} {} regionprops (@dots{}, @var{I}, @var{properties})
## Compute properties of image regions.
##
## Measures several properties for each region within an image. Returns
## a struct array, one element per region, whose field names are the
## measured properties.
##
## Individual regions can be defined in three different ways, a binary
## image, a labelled image, or a bwconncomp struct, each providing
## different advantages.
##
## @table @asis
## @item @var{BW}
## A binary image. Must be of class logical. Individual regions will be
## the connected component as computed by @code{bwconnmp} using the
## maximal connectivity for the number of dimensions of @var{bw} (see
## @code{conndef} for details). For alternative connectivities, call
## @code{bwconncomp} directly and use its output instead.
##
## @var{bw} must really be of class logical. If not, even if it is a
## numeric array of 0's and 1's, it will be treated as a labelled image
## with a single discontinuous region. For example:
##
## @example
## ## Handled as binary image with 3 regions
## bw = logical ([
## 1 0 1 0 1
## 1 0 1 0 1
## ]);
##
## ## Handled as labelled image with 1 region
## bw = [
## 1 0 1 0 1
## 1 0 1 0 1
## ];
## @end example
##
## @item @var{L}
## A labelled image. Each region is the collection of all positive
## elements with the same value. This allows computing properties of
## regions that would otherwise be considered separate or connected.
## For example:
##
## @example
## ## Recognizes 4 regions
## l = [
## 1 2 3 4
## 1 2 3 4
## ];
##
## ## Recognizes 2 (discontinuous) regions
## l = [
## 1 2 1 2
## 1 2 1 2
## ];
## @end example
##
## @item @var{CC}
## A @code{bwconnmp()} structure. This is a struct with the following
## 4 fields: Connectivity, ImageSize, NumObjects, and PixelIdxList. See
## @code{bwconncomp} for details.
##
## @end table
##
## The properties to be measured can be defined via a cell array or a
## comma separated list or strings. Some of the properties are only
## supported if the matching grayscale image @var{I} is also supplied.
## Others are only supported for 2 dimensional images. See the list
## below for details on each property limitation. If none is specified,
## it defaults to the @qcode{"basic"} set of properties.
##
## @table @asis
## @item @qcode{"Area"}
## The number of pixels in the region. Note that this differs from
## @code{bwarea} where each pixel has different weights.
##
## @item @qcode{"BoundingBox"}
## The smalles rectangle that encloses the region. This is represented
## as a row vector such as
## @code{[x y z @dots{} x_length y_length z_length @dots{}]}.
##
## The first half corresponds to the lower coordinates of each dimension
## while the second half, to the length in that dimension. For the two
## dimensional case, the first 2 elements correspond to the coordinates
## of the upper left corner of the bounding box, while the two last entries
## are the width and the height of the box.
##
## @item @qcode{"Centroid"}
## The coordinates for the region centre of mass. This is a row vector
## with one element per dimension, such as @code{[x y z @dots{}]}.
##
## @item @qcode{"Eccentricity"}
## The eccentricity of the ellipse that has the same normalized
## second central moments as the region (value between 0 and 1).
##
## @item @qcode{"EquivDiameter"}
## The diameter of a circle with the same area as the object.
##
## @item @qcode{"EulerNumber"}
## The Euler number of the region using connectivity 8. Only supported
## for 2D images. See @code{bweuler} for details.
##
## @item @qcode{"Extent"}
## The area of the object divided by the area of the bounding box.
##
## @item @qcode{"Extrema"}
## Returns an 8-by-2 matrix with the extrema points of the object.
## The first column holds the returned x- and the second column the y-values.
## The order of the 8 points is: top-left, top-right, right-top, right-bottom,
## bottom-right, bottom-left, left-bottom, left-top.
##
## @item @qcode{"FilledArea"}
## The area of the object including possible holes.
##
## @item @qcode{"FilledImage"}
## A binary image with the same size as the object's bounding box that contains
## the object with all holes removed.
##
## @item @qcode{"Image"}
## An image with the same size as the bounding box that contains the original
## pixels.
##
## @item @qcode{"MajorAxisLength"}
## The length of the major axis of the ellipse that has the same
## normalized second central moments as the object.
##
## @item @qcode{"MaxIntensity"}
## The maximum intensity value inside each region.
## Requires a grayscale image @var{I}.
##
## @item @qcode{"MeanIntensity"}
## The mean intensity value inside each region.
## Requires a grayscale image @var{I}.
##
## @item @qcode{"MinIntensity"}
## The minimum intensity value inside each region.
## Requires a grayscale image @var{I}.
##
## @item @qcode{"MinorAxisLength"}
## The length of the minor axis of the ellipse that has the same
## normalized second central moments as the object.
##
## @item @qcode{"Orientation"}
## The angle between the x-axis and the major axis of the ellipse that
## has the same normalized second central moments as the object
## (value in degrees between -90 and 90).
##
## @item @qcode{"Perimeter"}
## The length of the boundary of the object.
##
## @item @qcode{"PixelIdxList"}
## The linear indices for the elements of each region in a column vector.
##
## @item @qcode{"PixelList"}
## The subscript indices for the elements of each region. This is a p-by-Q
## matrix where p is the number of elements and Q is the number of
## dimensions. Each row is of the form @code{[x y z @dots{}]}.
##
## @item @qcode{"PixelValues"}
## The actual pixel values inside each region in a column vector.
## Requires a grayscale image @var{I}.
##
## @item @qcode{"SubarrayIdx"}
## A cell array with subscript indices for the bounding box. This can
## be used as @code{@var{I}(@var{props}(@var{p}).SubarrayIdx@{:@})}, where
## @var{p} is one of the regions, to extract the image in its bounding box.
##
## @item @qcode{"WeightedCentroid"}
## The coordinates for the region centre of mass when using the intensity
## of each element as weight. This is a row vector with one element per
## dimension, such as @code{[x y z @dots{}]}.
## Requires a grayscale image @var{I}.
##
## @end table
##
## In addition, the strings @qcode{"basic"} and @qcode{"all"} can be
## used to select a subset of the properties:
##
## @table @asis
## @item @qcode{"basic"} (default)
## Compute @qcode{"Area"}, @qcode{"Centroid"}, and @qcode{"BoundingBox"}.
##
## @item @qcode{"all"}
## Computes all possible properties for the image, i.e., it will not
## compute properties that require grayscale unless the grayscale image
## is available, and it will not compute properties that are limited to
## 2 dimensions, unless the image is 2 dimensions.
##
## @end table
##
## @seealso{bwlabel, bwperim, bweuler}
## @end deftypefn
function props = regionprops (bw, varargin)
if (nargin < 1)
print_usage ();
endif
if (isstruct (bw))
if (! isempty (setxor (fieldnames (bw), {"Connectivity", "ImageSize", ...
"NumObjects", "PixelIdxList"})))
error ("regionprops: CC is an invalid bwconnmp() struct");
endif
cc = bw;
elseif (islogical (bw))
cc = bwconncomp (bw);
elseif (isnumeric (bw))
if (isinteger (bw))
if (intmin (class (bw)) < 0 && any (bw(:) < 0))
error ("regionprops: L must be non-negative integers only");
endif
else
if (any (bw(:) < 0) || any (fix (bw(:)) != bw(:)))
error ("regionprops: L must be non-negative integers only");
endif
endif
n_obj = max (bw(:));
if (! n_obj)
## workaround for https://savannah.gnu.org/bugs/index.php?47287
cc = struct ("ImageSize", size (bw), "NumObjects", n_obj,
"PixelIdxList", {cell(1, 0)});
else
l_idx = find (bw);
cc = struct ("ImageSize", size (bw), "NumObjects", n_obj,
"PixelIdxList", {accumarray(bw(l_idx)(:), l_idx, [1 n_obj],
@(x) {x})});
endif
else
error ("regionprops: no valid BW, CC, or L input");
endif
is_2d = numel (cc.ImageSize) == 2;
next_idx = 1;
has_gray = false;
if (numel (varargin) && isnumeric (varargin{1}))
next_idx++;
has_gray = true;
img = varargin{1};
sz = size (img);
if (! size_equal (sz, cc.ImageSize) || any (sz != cc.ImageSize))
error ("regionprops: BW and I sizes must be equal");
endif
endif
if (numel (varargin) >= next_idx)
if (iscell (varargin{next_idx}))
properties = varargin{next_idx++};
if (numel (varargin) >= next_idx)
print_usage ();
endif
else
properties = varargin(next_idx++:end);
endif
if (! iscellstr (properties))
error ("regionprops: PROPERTIES must be a string or a cell array of strings");
endif
properties = tolower (strrep (properties, "_", ""));
else
properties = {"basic"};
endif
properties = select_properties (properties, is_2d, has_gray);
## Some properties require the value of others. In addition, most
## properties have common code. Ideally, to avoid repeating
## computations, we would make use not only of the already measured
## properties. but also of their intermediary steps. We handle this
## with a stack of properties that need to be measured and we push
## dependencies into it as we find them. A scalar struct keeps all
## values whose fields are the properties and intermediary steps names.
##
## Note that we do not want to fill the return value just yet. The
## reason is that props is a struct array. Since the computation of
## the properties is vectorized, it would require a constant back and
## forth conversion between cell arrays and numeric arrays. So we
## keep everything in a numeric array and everything is much faster.
## At the end, we put everything in place in a struct array.
dependencies = struct (
"area", {{}},
"accum_subs", {{"area"}}, # private
"accum_subs_nd", {{"accum_subs"}}, # private
"boundingbox", {{"pixellist", "accum_subs_nd"}},
"centroid", {{"accum_subs_nd", "pixellist", "area"}},
"filledarea", {{"filledimage"}},
"filledimage", {{"image"}},
"image", {{"subarrayidx", "accum_subs", "pixelidxlist"}},
"pixelidxlist", {{}},
"pixellist", {{"pixelidxlist"}},
"subarrayidx", {{"boundingbox"}},
"convexarea", {{}},
"convexhull", {{}},
"conveximage", {{}},
"eccentricity", {{"minoraxislength", "majoraxislength"}},
"equivdiameter", {{"area"}},
"eulernumber", {{"image"}},
"extent", {{"area", "boundingbox"}},
"extrema", {{"area", "accum_subs_nd", "pixellist"}},
"local_ellipse", {{"area", "pixellist"}}, # private
"majoraxislength", {{"local_ellipse"}},
"minoraxislength", {{"local_ellipse"}},
"orientation", {{"local_ellipse"}},
"perimeter", {{}},
"solidity", {{}},
"maxintensity", {{"accum_subs", "pixelidxlist"}},
"meanintensity", {{"total_intensity", "area"}},
"minintensity", {{"accum_subs", "pixelidxlist"}},
"pixelvalues", {{"pixelidxlist"}},
"total_intensity", {{"accum_subs", "pixelidxlist"}},
"weightedcentroid", {{"accum_subs_nd", "total_intensity", "pixellist", "pixelidxlist", "area"}}
);
to_measure = properties;
values = struct ();
## There's too many indirectly dependent on "area", and even if not
## required, it will be required later to create the struct array.
values.area = rp_area (cc);
while (! isempty (to_measure))
pname = to_measure{end};
## Already computed. Pop it and move on.
if (isfield (values, pname))
to_measure(end) = [];
continue
endif
## There's missing dependencies. Push them and start again.
deps = dependencies.(pname);
missing = deps(! isfield (values, deps));
if (! isempty (missing))
to_measure(end+1:end+numel(missing)) = missing;
continue
endif
to_measure(end) = [];
switch (pname)
case "area"
values.area = rp_area (cc);
case "accum_subs"
values.accum_subs = rp_accum_subs (cc, values.area);
case "accum_subs_nd"
values.accum_subs_nd = rp_accum_subs_nd (cc, values.accum_subs);
case "boundingbox"
values.boundingbox = rp_bounding_box (cc, values.pixellist,
values.accum_subs_nd);
case "centroid"
values.centroid = rp_centroid (cc, values.pixellist, values.area,
values.accum_subs_nd);
case "filledarea"
values.filledarea = rp_filled_area (values.filledimage);
case "filledimage"
values.filledimage = rp_filled_image (values.image);
case "image"
values.image = rp_image (cc, bw, values.pixelidxlist,
values.accum_subs, values.subarrayidx);
case "pixelidxlist"
values.pixelidxlist = rp_pixel_idx_list (cc);
case "pixellist"
values.pixellist = rp_pixel_list (cc, values.pixelidxlist);
case "subarrayidx"
values.subarrayidx = rp_subarray_idx (cc, values.boundingbox);
case "convexarea"
error ("regionprops: property \"ConvexArea\" not yet implemented");
case "convexhull"
error ("regionprops: property \"ConvexHull\" not yet implemented");
case "conveximage"
error ("regionprops: property \"ConvexImage\" not yet implemented");
case "eccentricity"
values.eccentricity = rep_eccentricity (values.minoraxislength,
values.majoraxislength);
case "equivdiameter"
values.equivdiameter = rp_equivdiameter (values.area);
case "eulernumber"
values.eulernumber = rp_euler_number (values.image);
case "extent"
values.extent = rp_extent (values.area, values.boundingbox);
case "extrema"
values.extrema = rp_extrema (cc, values.pixellist, values.area,
values.accum_subs_nd);
case "local_ellipse"
values.local_ellipse = true;
[values.minoraxislength, values.majoraxislength, ...
values.orientation] = rp_local_ellipse (values.area, values.pixellist);
case {"majoraxislength", "minoraxislength", "orientation"}
## Do nothing. These are "virtual" targets which are computed
## in local_ellipse.
case "perimeter"
values.perimeter = rp_perimeter (cc, bw);
case "solidity"
error ("regionprops: property \"Solidity\" not yet implemented");
case "maxintensity"
values.maxintensity = rp_max_intensity (cc, img,
values.pixelidxlist,
values.accum_subs);
case "meanintensity"
values.meanintensity = rp_mean_intensity (cc, values.total_intensity,
values.area);
case "minintensity"
values.minintensity = rp_min_intensity (cc, img,
values.pixelidxlist,
values.accum_subs);
case "pixelvalues"
values.pixelvalues = rp_pixel_values (cc, img, values.pixelidxlist);
case "total_intensity"
values.total_intensity = rp_total_intensity (cc, img,
values.pixelidxlist,
values.accum_subs);
case "weightedcentroid"
values.weightedcentroid = rp_weighted_centroid (cc, img,
values.pixellist,
values.pixelidxlist,
values.total_intensity,
values.accum_subs_nd,
values.area);
otherwise
error ("regionprops: unknown property `%s'", pname);
endswitch
endwhile
## After we have made all the measurements, we need to pack everything
## into struct arrays.
Area = values.area;
props = repmat (struct (), cc.NumObjects, 1);
for ip = 1:numel (properties)
switch (properties{ip})
case "area"
[props.Area] = num2cell (Area){:};
case "boundingbox"
[props.BoundingBox] = mat2cell (values.boundingbox,
ones (cc.NumObjects, 1)){:};
case "centroid"
[props.Centroid] = mat2cell (values.centroid,
ones (cc.NumObjects, 1)){:};
case "filledarea"
[props.FilledArea] = num2cell (values.filledarea){:};
case "filledimage"
[props.FilledImage] = values.filledimage{:};
case "image"
[props.Image] = values.image{:};
case "pixelidxlist"
[props.PixelIdxList] = mat2cell (values.pixelidxlist, Area){:};
case "pixellist"
[props.PixelList] = mat2cell (values.pixellist, Area){:};
case "subarrayidx"
[props.SubarrayIdx] = values.subarrayidx{:};
# case "convexarea"
# case "convexhull"
# case "conveximage"
case "eccentricity"
[props.Eccentricity] = num2cell (values.eccentricity){:};
case "equivdiameter"
[props.EquivDiameter] = num2cell (values.equivdiameter){:};
case "eulernumber"
[props.EulerNumber] = num2cell (values.eulernumber){:};
case "extent"
[props.Extent] = num2cell (values.extent){:};
case "extrema"
[props.Extrema] = mat2cell (values.extrema,
repmat (8, 1, cc.NumObjects)){:};
case "majoraxislength"
[props.MajorAxisLength] = num2cell (values.majoraxislength){:};
case "minoraxislength"
[props.MinorAxisLength] = num2cell (values.minoraxislength){:};
case "orientation"
[props.Orientation] = num2cell (values.orientation){:};
case "perimeter"
[props.Perimeter] = num2cell (values.perimeter){:};
# case "solidity"
case "maxintensity"
[props.MaxIntensity] = num2cell (values.maxintensity){:};
case "meanintensity"
[props.MeanIntensity] = num2cell (values.meanintensity){:};
case "minintensity"
[props.MinIntensity] = num2cell (values.minintensity){:};
case "pixelvalues"
[props.PixelValues] = mat2cell (values.pixelvalues, Area){:};
case "weightedcentroid"
[props.WeightedCentroid] = mat2cell (values.weightedcentroid,
ones (cc.NumObjects, 1)){:};
otherwise
error ("regionprops: unknown property `%s'", pname);
endswitch
endfor
endfunction
function props = select_properties (props, is_2d, has_gray)
persistent props_basic = {
"area",
"boundingbox",
"centroid",
};
persistent props_2d = {
# "convexarea",
# "convexhull",
# "conveximage",
"eccentricity",
"equivdiameter",
"extrema",
"majoraxislength",
"minoraxislength",
"orientation",
"perimeter",
# "solidity",
};
persistent props_gray = {
"maxintensity",
"meanintensity",
"minintensity",
"pixelvalues",
"weightedcentroid",
};
persistent props_others = {
"eulernumber",
"extent", # Matlab limits Extent to 2D. Octave does not.
"filledarea",
"filledimage",
"image",
"pixelidxlist",
"pixellist",
"subarrayidx",
};
props = props(:);
p_basic = strcmp ("basic", props);
p_all = strcmp ("all", props);
props(p_basic | p_all) = [];
if (any (p_all))
props = vertcat (props, props_basic, props_others);
if (is_2d)
props = vertcat (props, props_2d);
endif
if (has_gray)
props = vertcat (props, props_gray);
endif
elseif (any (p_basic))
props = vertcat (props, props_basic);
endif
if (! is_2d)
non_2d = ismember (props, props_2d);
if (any (non_2d))
warning ("regionprops: ignoring %s properties for non 2 dimensional image",
strjoin (props(non_2d), ", "));
props(non_2d) = [];
endif
endif
if (! has_gray)
non_val = ismember (props, props_gray);
if (any (non_val))
warning ("regionprops: ignoring %s properties due to missing grayscale image",
strjoin (props(non_val), ", "));
props(non_val) = [];
endif
endif
endfunction
function area = rp_area (cc)
area = cellfun (@numel, cc.PixelIdxList(:));
endfunction
function centroid = rp_centroid (cc, pixel_list, area, subs_nd)
nd = numel (cc.ImageSize);
no = cc.NumObjects;
weighted_sub = pixel_list ./ vec (repelems (area, [1:no; vec(area, 2)]));
centroid = accumarray (subs_nd, weighted_sub(:), [no nd]);
endfunction
function bounding_box = rp_bounding_box (cc, pixel_list, subs_nd)
nd = numel (cc.ImageSize);
no = cc.NumObjects;
init_corner = accumarray (subs_nd, pixel_list(:), [no nd], @min) - 0.5;
end_corner = accumarray (subs_nd, pixel_list(:), [no nd], @max) + 0.5;
bounding_box = [(init_corner) (end_corner - init_corner)];
endfunction
function eccentricity = rep_eccentricity (minoraxislength, majoraxislength)
eccentricity = sqrt (1 - (minoraxislength ./ majoraxislength).^2);
endfunction
function equivdiameter = rp_equivdiameter (area)
equivdiameter = sqrt (4 * area / pi);
endfunction
function euler = rp_euler_number (bb_images)
## TODO there should be a way to vectorize this, right?
euler = cellfun (@bweuler, bb_images);
endfunction
function extent = rp_extent (area, bounding_box)
bb_area = prod (bounding_box(:,(end/2)+1:end), 2);
extent = area ./ bb_area;
endfunction
function extrema = rp_extrema (cc, pixel_list, area, subs_nd)
## Note that this property is limited to 2d regions
no = cc.NumObjects;
## Algorithm:
## 1. Find the max and min values for row and column values on
## each object. That is, max and min of each column in
## pixel_list, for each object.
##
## 2. Get a mask for pixel_list, for those rows and columns indices.
##
## 3. Use that mask on the other dimension to find the max and min
## values for each object.
##
## 4. Assign those values to a (8*no)x2 array.
##
## This gets a bit convoluted because we do the two dimensions and
## all objects at the same time.
## In the following, "head" and "base" are the top and bottom index for
## each dimension. We use the words "head" and "base" to avoid confusion
## with the rest where top and bottom only refer to the row dimension.
## So "head" has the lowest index values (rows for top left/right, and
## columns for left top/bottom), while "base" has the highest index
## values (rows for bottom left/right, and columns for right top/bottom).
## 1. Find the max and min values for row and column values on
## each object. That is, max and min of each column in
## pixel_list, for each object.
head = accumarray (subs_nd, pixel_list(:), [no 2], @min);
base = accumarray (subs_nd, pixel_list(:), [no 2], @max);
## 2. Get a mask for pixel_list, for those rows and columns indices.
##
## 3. Use that mask on the other dimension to find the max and min
## values for each object.
##
## head_head and head_base, have the lowest index (head) and the
## highest index (base) values, for the "head" indices.
## Same logic for base_head and base_base.
px_l_sz = size (pixel_list);
rep_extrema = @(x) reshape (repelems (x, [1:(no*2); area(:)' area(:)']),
px_l_sz);
head_mask = (pixel_list == rep_extrema (head))(:, [2 1]);
head_head = accumarray (subs_nd(head_mask), pixel_list(head_mask), [no 2], @min);
head_base = accumarray (subs_nd(head_mask), pixel_list(head_mask), [no 2], @max);
base_mask = (pixel_list == rep_extrema (base))(:, [2 1]);
base_head = accumarray (subs_nd(base_mask), pixel_list(base_mask), [no 2], @min);
base_base = accumarray (subs_nd(base_mask), pixel_list(base_mask), [no 2], @max);
## Adjust from idx integer to pixel border coordinates
head -= 0.5;
head_head -= 0.5;
head_base += 0.5;
base += 0.5;
base_head -= 0.5;
base_base += 0.5;
## 4. Assign those values to a (8*no)x2 array.
nr = 8 * no;
extrema = zeros (nr, 2);
extrema(1:8:nr, 2) = head(:,2); # y values for top left
extrema(2:8:nr, 2) = head(:,2); # y values for top right
extrema(7:8:nr, 1) = head(:,1); # x values for left bottom
extrema(8:8:nr, 1) = head(:,1); # x values for left top
extrema(5:8:nr, 2) = base(:,2); # y values for bottom right
extrema(6:8:nr, 2) = base(:,2); # y values for bottom left
extrema(3:8:nr, 1) = base(:,1); # x values for right top
extrema(4:8:nr, 1) = base(:,1); # x values for right bottom
extrema(1:8:nr, 1) = head_head(:,1); # x value for top left
extrema(8:8:nr, 2) = head_head(:,2); # y value for left top
extrema(2:8:nr, 1) = head_base(:,1); # x value for top right
extrema(7:8:nr, 2) = head_base(:,2); # y value for left bottom
extrema(6:8:nr, 1) = base_head(:,1); # x value for bottom left
extrema(3:8:nr, 2) = base_head(:,2); # y value for right top
extrema(5:8:nr, 1) = base_base(:,1); # x value for bottom right
extrema(4:8:nr, 2) = base_base(:,2); # y value for right bottom
endfunction
function filled_area = rp_filled_area (bb_filled_images)
filled_area = cellfun ('nnz', bb_filled_images);
endfunction
function bb_filled_images = rp_filled_image (bb_images)
## Beware if attempting to vectorize this. The bounding boxes of
## different regions may overlap, and a "hole" may be a hole for
## several regions (e.g., concentric circles). There should be tests
## this weird cases.
bb_filled_images = cellfun (@(x) imfill (x, "holes"), bb_images,
"UniformOutput", false);
endfunction
function bb_images = rp_image (cc, bw, idx, subs, subarray_idx)
## For this property, we must remember to remove elements from other
## regions (remember that bounding boxes may overlap). We do that by
## creating a labelled image, extracting the bounding boxes, and then
## comparing elements.
no = cc.NumObjects;
## If BW is numeric then it already is a labeled image.
if (isnumeric (bw))
L = bw;
else
if (no < 255)
cls = "uint8";
elseif (no < 65535)
cls = "uint16"
elseif (no < 4294967295)
cls = "uint32";
else
cls = "double";
endif
L = zeros (cc.ImageSize, cls);
L(idx) = subs;
endif
sub_structs = num2cell (struct ("type", "()", "subs", subarray_idx));
bb_images = cellfun (@subsref, {L}, sub_structs, "UniformOutput", false);
bb_images = cellfun (@eq, bb_images, num2cell (1:no)(:),
"UniformOutput", false);
endfunction
function perim = rp_perimeter (cc, bw)
if (! islogical (bw)) # Then input was not really a bw. Create it.
bw = false (cc.ImageSize);
bw(cell2mat (cc.PixelIdxList(:))) = true;
endif
no = cc.NumObjects;
boundaries = bwboundaries (bw, 8, "noholes");
npx = cellfun ("size", boundaries, 1);
dists = diff (cell2mat (boundaries));
dists(cumsum (npx)(1:end-1),:) = [];
dists = sqrt (sumsq (dists, 2));
subs = repelems (1:no, [1:no; (npx-1)(:)']);
perim = accumarray (subs(:), dists(:), [no 1]);
endfunction
function idx = rp_pixel_idx_list (cc)
idx = cell2mat (cc.PixelIdxList(:));
endfunction
function pixel_list = rp_pixel_list (cc, idx)
nd = numel (cc.ImageSize);
pixel_list = cell2mat (nthargout (1:nd, @ind2sub, cc.ImageSize, idx));
## If idx is empty, pixel_list will have size (0x0) so we need to expand
## it to (0xnd). Unfortunately, in2sub() returns (0x0) and not (0x1)
pixel_list = postpad (pixel_list, nd, 0, 2);
pixel_list(:,[1 2]) = pixel_list(:,[2 1]);
endfunction
function pixel_values = rp_pixel_values (cc, img, idx)
pixel_values = img(idx);
endfunction
function max_intensity = rp_max_intensity (cc, img, idx, subs)
max_intensity = accumarray (subs, img(idx), [cc.NumObjects 1], @max);
endfunction
function mean_intensity = rp_mean_intensity (cc, totals, area)
mean_intensity = totals ./ area;
endfunction
function min_intensity = rp_min_intensity (cc, img, idx, subs)
min_intensity = accumarray (subs, img(idx), [cc.NumObjects 1], @min);
endfunction
function subarray_idx = rp_subarray_idx (cc, bounding_box)
nd = columns (bounding_box) / 2;
bb_limits = bounding_box;
## Swap x y coordinates back to row and column
bb_limits(:,[1 2 [1 2]+nd]) = bounding_box(:,[2 1 [2 1]+nd]);
## Set initial coordinates (it is faster to add 0.5 than to call ceil())
bb_limits(:,1:nd) += 0.5;
## Set the end coordinates
bb_limits(:,(nd+1):end) += bb_limits(:,1:nd);
bb_limits(:,(nd+1):end) -= 1;
subarray_idx = arrayfun (@colon, bb_limits(:,1:nd), bb_limits(:,(nd+1):end),
"UniformOutput", false);
subarray_idx = mat2cell (subarray_idx, ones (cc.NumObjects, 1));
endfunction
function weighted_centroid = rp_weighted_centroid (cc, img, pixel_list,
pixel_idx_list, totals,
subs_nd, area)
no = cc.NumObjects;
nd = numel (cc.ImageSize);
rep_totals = vec (repelems (totals, [1:no; vec(area, 2)]));
## Note that we need 1 column, even if pixel_idx_list is [], hence (:)
## so that we get (0x1) instead of (0x0)
vals = img(pixel_idx_list)(:);
weighted_pixel_list = pixel_list .* (double (vals) ./ rep_totals);
weighted_centroid = accumarray (subs_nd, weighted_pixel_list(:), [no nd]);
endfunction
##
## Intermediary steps -- no match to specific property
##
## Creates subscripts for use with accumarray, when computing a column vector.
function subs = rp_accum_subs (cc, area)
rn = 1:cc.NumObjects;
R = [rn; vec(area, 2)];
subs = vec (repelems (rn, R));
endfunction
## Creates subscripts for use with accumarray, when computing something
## with a column per number of dimensions
function subs_nd = rp_accum_subs_nd (cc, subs)
nd = numel (cc.ImageSize);
no = cc.NumObjects;
## FIXME workaround bug #47085
subs_nd = vec (bsxfun (@plus, subs, [0:no:(no*nd-1)]));
endfunction
## Total/Integrated density of each region.
function totals = rp_total_intensity (cc, img, idx, subs)
totals = accumarray (subs, img(idx), [cc.NumObjects 1]);
endfunction
function [minor, major, orientation] = rp_local_ellipse (area, pixellist)
## FIXME: this should be vectorized. See R.M. Haralick and Linda G.
## Shapiro, "Computer and Robot Vision: Volume 1", Appendix A
no = numel (area);
minor = zeros (no, 1);
major = minor;
orientation = minor;
c_idx = 1;
for idx = 1:no
sel = c_idx:(c_idx + area(idx) -1);
X = pixellist(sel, 2);
Y = pixellist(sel, 1);
## calculate (centralised) second moment of region with pixels [X, Y]
## This is equivalent to "cov ([X(:) Y(:)], 1)" but will work as
## expected even if X and Y have only one row each.
C = center ([X(:) Y(:)], 1);
C = C' * C / (rows (C));
C = C + 1/12 .* eye (rows (C)); # centralised second moment of 1 pixel is 1/12
[V, lambda] = eig (C);
lambda_d = 4 .* sqrt (diag (lambda));
minor(idx) = min (lambda_d);
[major(idx), major_idx] = max (lambda_d);
major_vec = V(:, major_idx);
orientation(idx) = -(180/pi) .* atan (major_vec(2) ./ major_vec(1));
endfor
endfunction
%!shared bw2d, gray2d, bw2d_over_bb, bw2d_insides
%! bw2d = logical ([
%! 0 1 0 1 1 0
%! 0 1 1 0 1 1
%! 0 1 0 0 0 0
%! 0 0 0 1 1 1
%! 0 0 1 1 0 1]);
%!
%! gray2d = [
%! 2 4 0 7 5 2
%! 3 0 4 9 3 7
%! 0 5 3 4 8 1
%! 9 2 0 5 8 6
%! 8 9 7 2 2 5];
%!
%! ## For testing overlapping bounding boxes
%! bw2d_over_bb = logical ([
%! 0 1 1 1 0 1 1
%! 1 1 0 0 0 0 1
%! 1 0 0 1 1 0 1
%! 1 0 0 1 1 0 0
%! 0 0 0 1 1 1 1]);
%!
%! ## For testing when there's regions inside regions
%! bw2d_insides = logical ([
%! 0 0 0 0 0 0 0 0
%! 0 1 1 1 1 1 1 0
%! 0 1 0 0 0 0 1 0
%! 0 1 0 1 1 0 1 0
%! 0 1 0 1 1 0 1 0
%! 0 1 0 0 0 0 1 0
%! 0 1 1 1 1 1 1 0
%! 0 0 0 0 0 0 0 0]);
%!function c = get_2d_centroid_for (idx)
%! subs = ind2sub ([5 6], idx);
%! m = false ([5 6]);
%! m(idx) = true;
%! y = sum ((1:5)' .* sum (m, 2) /sum (m(:)));
%! x = sum ((1:6) .* sum (m, 1) /sum (m(:)));
%! c = [x y];
%!endfunction
%!assert (regionprops (bw2d, "Area"), struct ("Area", {8; 6}))
%!assert (regionprops (double (bw2d), "Area"), struct ("Area", {14}))
%!assert (regionprops (bwlabel (bw2d, 4), "Area"), struct ("Area", {4; 6; 4}))
## These are different from Matlab because the indices in PixelIdxList
## do not appear sorted. This is because we get them from bwconncomp()
## which does not sort them (it seems bwconncomp in Matlab returns them
## sorted but that's undocumented, just like the order here is undocumented)
%!assert (regionprops (bw2d, "PixelIdxList"),
%! struct ("PixelIdxList", {[6; 7; 12; 8; 16; 21; 22; 27]
%! [15; 19; 20; 24; 29; 30]}))
%!assert (regionprops (bwlabel (bw2d, 4), "PixelIdxList"),
%! struct ("PixelIdxList", {[6; 7; 8; 12]
%! [15; 19; 20; 24; 29; 30]
%! [16; 21; 22; 27]}))
%!assert (regionprops (bw2d, "PixelList"),
%! struct ("PixelList", {[2 1; 2 2; 3 2; 2 3; 4 1; 5 1; 5 2; 6 2]
%! [3 5; 4 4; 4 5; 5 4; 6 4; 6 5]}))
%!assert (regionprops (bwlabel (bw2d, 4), "PixelList"),
%! struct ("PixelList", {[2 1; 2 2; 2 3; 3 2]
%! [3 5; 4 4; 4 5; 5 4; 6 4; 6 5]
%! [4 1; 5 1; 5 2; 6 2]}))
## Also different from Matlab because we do not sort the values by index
%!assert (regionprops (bw2d, gray2d, "PixelValues"),
%! struct ("PixelValues", {[4; 0; 4; 5; 7; 5; 3; 7]
%! [7; 5; 2; 8; 6; 5]}))
%!assert (regionprops (bw2d, gray2d, "MaxIntensity"),
%! struct ("MaxIntensity", {7; 8}))
%!assert (regionprops (bw2d, gray2d, "MinIntensity"),
%! struct ("MinIntensity", {0; 2}))
%!assert (regionprops (bw2d, "BoundingBox"),
%! struct ("BoundingBox", {[1.5 0.5 5 3]; [2.5 3.5 4 2]}))
%!assert (regionprops (bw2d, "Centroid"),
%! struct ("Centroid", {get_2d_centroid_for([6 7 8 12 16 21 22 27])
%! get_2d_centroid_for([15 19 20 24 29 30])}))
%!test
%! props = struct ("Area", {8; 6},
%! "Centroid", {get_2d_centroid_for([6 7 8 12 16 21 22 27])
%! get_2d_centroid_for([15 19 20 24 29 30])},
%! "BoundingBox", {[1.5 0.5 5 3]; [2.5 3.5 4 2]});
%! assert (regionprops (bw2d, "basic"), props)
%! assert (regionprops (bwconncomp (bw2d, 8), "basic"), props)
%! assert (regionprops (bwlabeln (bw2d, 8), "basic"), props)
%!test
%! props = struct ("Area", {4; 6; 4},
%! "Centroid", {get_2d_centroid_for([6 7 8 12])
%! get_2d_centroid_for([15 19 20 24 29 30])
%! get_2d_centroid_for([16 21 22 27])},
%! "BoundingBox", {[1.5 0.5 2 3]; [2.5 3.5 4 2]; [3.5 0.5 3 2]});
%! assert (regionprops (bwconncomp (bw2d, 4), "basic"), props)
%! assert (regionprops (bwlabeln (bw2d, 4), "basic"), props)
## This it is treated as labeled image with a single discontiguous region.
%!assert (regionprops (double (bw2d), "basic"),
%! struct ("Area", 14,
%! "Centroid", get_2d_centroid_for (find (bw2d)),
%! "BoundingBox", [1.5 0.5 5 5]), eps*1000)
%!assert (regionprops ([0 0 1], "Centroid").Centroid, [3 1])
%!assert (regionprops ([0 0 1; 0 0 0], "Centroid").Centroid, [3 1])
## bug #39701
%!assert (regionprops ([0 1 1], "Centroid").Centroid, [2.5 1])
%!assert (regionprops ([0 1 1; 0 0 0], "Centroid").Centroid, [2.5 1])
%!test
%! a = zeros (2, 3, 3);
%! a(:, :, 1) = [0 1 0; 0 0 0];
%! a(:, :, 3) = a(:, :, 1);
%! c = regionprops (a, "centroid");
%! assert (c.Centroid, [2 1 2])
%!test
%! d1=2; d2=4; d3=6;
%! a = ones (d1, d2, d3);
%! c = regionprops (a, "centroid");
%! assert (c.Centroid, [mean(1:d2), mean(1:d1), mean(1:d3)], eps*1000)
%!test
%! a = [0 0 2 2; 3 3 0 0; 0 1 0 1];
%! c = regionprops (a, "centroid");
%! assert (c(1).Centroid, [3 3])
%! assert (c(2).Centroid, [3.5 1])
%! assert (c(3).Centroid, [1.5 2])
%!test
%!assert (regionprops (bw2d, gray2d, "WeightedCentroid"),
%! struct ("WeightedCentroid",
%! {sum([2 1; 2 2; 3 2; 2 3; 4 1; 5 1; 5 2; 6 2]
%! .* ([4; 0; 4; 5; 7; 5; 3; 7] / 35))
%! sum([3 5; 4 4; 4 5; 5 4; 6 4; 6 5]
%! .* ([7; 5; 2; 8; 6; 5] / 33))}))
%!test
%! img = zeros (3, 9);
%! img(2, 1:9) = 0:0.1:0.8;
%! bw = im2bw (img, 0.5);
%! props = regionprops (bw, img, "WeightedCentroid");
%! ix = 7:9;
%! x = sum (img(2,ix) .* (ix)) / sum (img(2,ix));
%! assert (props(1).WeightedCentroid(1), x, 10*eps)
%! assert (props(1).WeightedCentroid(2), 2, 10*eps)
%!assert (regionprops (bw2d, gray2d, "MeanIntensity"),
%! struct ("MeanIntensity", {mean([4 0 5 4 7 5 3 7])
%! mean([7 5 2 8 6 5])}))
%!assert (regionprops (bwlabel (bw2d, 4), gray2d, "MeanIntensity"),
%! struct ("MeanIntensity", {mean([4 0 5 4])
%! mean([7 5 2 8 6 5])
%! mean([7 5 3 7])}))
%!assert (regionprops (bw2d, "SubarrayIdx"),
%! struct ("SubarrayIdx", {{[1 2 3], [2 3 4 5 6]}
%! {[4 5], [3 4 5 6]}}))
%!assert (regionprops (bwlabel (bw2d, 4), "SubarrayIdx"),
%! struct ("SubarrayIdx", {{[1 2 3], [2 3]}
%! {[4 5], [3 4 5 6]}
%! {[1 2], [4 5 6]}}))
%!test
%! out = struct ("Image", {logical([1 0 1 1 0; 1 1 0 1 1; 1 0 0 0 0])
%! logical([0 1 1 1; 1 1 0 1])});
%! assert (regionprops (bw2d, "Image"), out)
%! assert (regionprops (bw2d, gray2d, "Image"), out)
%! assert (regionprops (bwlabel (bw2d), "Image"), out)
%!assert (regionprops (bwlabel (bw2d, 4), "Image"),
%! struct ("Image", {logical([1 0; 1 1; 1 0])
%! logical([0 1 1 1; 1 1 0 1])
%! logical([1 1 0; 0 1 1])}))
## Test overlapping bounding boxes
%!test
%! out = struct ("Image", {logical([0 1 1 1; 1 1 0 0; 1 0 0 0; 1 0 0 0])
%! logical([1 1 0 0; 1 1 0 0; 1 1 1 1])
%! logical([1 1; 0 1; 0 1])});
%! assert (regionprops (bw2d_over_bb, "Image"), out)
%! assert (regionprops (bwlabel (bw2d_over_bb), "Image"), out)
%!test
%! out = struct ("Image", {logical([1 1 1 1 1 1
%! 1 0 0 0 0 1
%! 1 0 0 0 0 1
%! 1 0 0 0 0 1
%! 1 0 0 0 0 1
%! 1 1 1 1 1 1])
%! logical([1 1; 1 1])});
%! assert (regionprops (bw2d_insides, "Image"), out)
%! assert (regionprops (bwlabel (bw2d_insides), "Image"), out)
%!test
%! l = uint8 ([
%! 0 0 0 0 0 0
%! 0 1 1 1 1 0
%! 0 1 2 2 1 0
%! 0 1 2 2 1 0
%! 0 1 1 1 1 0
%! 0 0 0 0 0 0
%! ]);
%! assert (regionprops (l, "EulerNumber"),
%! struct ("EulerNumber", {0; 1}))
%!
%! l = uint8 ([
%! 0 0 0 0 0 0 0
%! 0 1 1 1 1 1 0
%! 0 1 2 2 2 1 0
%! 0 1 2 3 2 1 0
%! 0 1 2 2 2 1 0
%! 0 1 1 1 1 1 0
%! 0 0 0 0 0 0 0
%! ]);
%! assert (regionprops (l, "EulerNumber"),
%! struct ("EulerNumber", {0; 0; 1}))
%!test
%! l = uint8 ([
%! 0 0 0 0 0 0 0
%! 0 1 1 1 1 1 0
%! 0 1 0 0 0 1 0
%! 0 1 0 1 0 1 0
%! 0 1 0 0 0 1 0
%! 0 1 1 1 1 1 0
%! 0 0 0 0 0 0 0
%! ]);
%! assert (regionprops (l, "EulerNumber"),
%! struct ("EulerNumber", 1))
%!test
%! l = uint8 ([
%! 1 1 1 1 1 1 1
%! 1 1 2 1 2 2 1
%! 1 2 1 2 1 2 1
%! 1 1 2 1 2 1 1
%! 1 2 1 2 1 2 1
%! 1 2 2 1 2 1 1
%! 1 1 1 1 1 1 1
%! ]);
%! assert (regionprops (l, "EulerNumber"),
%! struct ("EulerNumber", {-9; -4}))
%!test
%! l = uint8 ([
%! 1 1 1 1 1 1 1
%! 1 1 4 1 5 5 1
%! 1 3 1 4 1 5 1
%! 1 1 3 1 4 1 1
%! 1 2 1 3 1 4 1
%! 1 2 2 1 3 1 1
%! 1 1 1 1 1 1 1
%! ]);
%! assert (regionprops (l, "EulerNumber"),
%! struct ("EulerNumber", {-9; 1; 1; 1; 1}))
## Test connectivity for hole filling.
%!test
%! l = uint8 ([
%! 1 1 1 1 1 1 1
%! 0 1 2 1 2 2 1
%! 1 2 1 2 1 2 1
%! 1 1 2 1 2 1 1
%! 1 2 1 2 1 2 1
%! 1 2 2 1 2 1 1
%! 1 1 1 1 1 1 1
%! ]);
%! filled = {
%! logical([
%! 1 1 1 1 1 1 1
%! 0 1 1 1 1 1 1
%! 1 1 1 1 1 1 1
%! 1 1 1 1 1 1 1
%! 1 1 1 1 1 1 1
%! 1 1 1 1 1 1 1
%! 1 1 1 1 1 1 1
%! ]);
%! logical([
%! 0 1 0 1 1
%! 1 1 1 1 1
%! 0 1 1 1 0
%! 1 1 1 1 1
%! 1 1 0 1 0
%! ]);
%! };
%! assert (regionprops (l, {"FilledImage", "FilledArea"}),
%! struct ("FilledImage", filled, "FilledArea", {48; 19}))
## Disconnected regions without holes.
%!test
%! l = uint8 ([
%! 0 0 0 0 0 0 0
%! 0 1 0 1 0 1 0
%! 0 1 0 1 0 1 0
%! 0 0 0 0 0 0 0
%! ]);
%! filled = logical ([
%! 1 0 1 0 1
%! 1 0 1 0 1
%! ]);
%! assert (regionprops (l, {"FilledImage", "FilledArea"}),
%! struct ("FilledImage", filled, "FilledArea", 6))
%!
%! l = uint8 ([
%! 2 2 2 2 2 2 2
%! 2 1 2 1 2 1 2
%! 2 1 2 1 2 1 2
%! 2 2 2 2 2 2 2
%! ]);
%! filled = {
%! logical([
%! 1 0 1 0 1
%! 1 0 1 0 1
%! ]);
%! true(4, 7)
%! };
%! assert (regionprops (l, {"FilledImage", "FilledArea"}),
%! struct ("FilledImage", filled, "FilledArea", {6; 28}))
## Concentric regions to fill holes.
%!test
%! l = uint8 ([
%! 0 0 0 0 0 0 0
%! 0 1 1 1 1 1 0
%! 0 1 2 2 2 1 0
%! 0 1 2 3 2 1 0
%! 0 1 2 2 2 1 0
%! 0 1 1 1 1 1 0
%! 0 0 0 0 0 0 0
%! ]);
%! filled = {true(5, 5); true(3, 3); true};
%! assert (regionprops (l, {"FilledImage", "FilledArea"}),
%! struct ("FilledImage", filled, "FilledArea", {25; 9; 1}))
## Regions with overlapping holes.
%!test
%! l = uint8 ([
%! 1 1 1 2 0 0
%! 1 0 2 1 2 0
%! 1 2 0 1 0 2
%! 1 2 1 1 0 2
%! 0 1 2 2 2 2
%! ]);
%! filled = {
%! logical([
%! 1 1 1 0
%! 1 1 1 1
%! 1 1 1 1
%! 1 1 1 1
%! 0 1 0 0
%! ]);
%! logical([
%! 0 0 1 0 0
%! 0 1 1 1 0
%! 1 1 1 1 1
%! 1 1 1 1 1
%! 0 1 1 1 1
%! ])
%! };
%! assert (regionprops (l, {"FilledImage", "FilledArea"}),
%! struct ("FilledImage", filled, "FilledArea", {16; 18}))
## 3D region to fill which requires connectivity 6 (fails with 18 or 26).
%!test
%! bw = false (5, 5, 5);
%! bw(2:4, 2:4, [1 5]) = true;
%! bw(2:4, [1 5], 2:4) = true;
%! bw([1 5], 2:4, 2:4) = true;
%! filled = bw;
%! filled(2:4, 2:4, 2:4) = true;
%! assert (regionprops (bw, {"FilledImage", "FilledArea"}),
%! struct ("FilledImage", filled, "FilledArea", 81))
%!test
%! l = uint8 ([
%! 1 1 1 2 0 0
%! 1 0 2 1 2 0
%! 1 2 0 1 0 2
%! 1 2 1 1 0 2
%! 0 1 2 2 2 2
%! ]);
%! assert (regionprops (l, {"Extent"}), struct ("Extent", {0.55; 0.44}))
%!test
%! bw = logical ([0 0 0; 0 1 0; 0 0 0]);
%! assert (regionprops (bw, {"MinorAxisLength", "MajorAxisLength", ...
%! "Eccentricity"}),
%! struct ("MajorAxisLength", 4 .* sqrt (1/12),
%! "MinorAxisLength", 4 .* sqrt (1/12),
%! "Eccentricity", 0))
%!test
%! a = eye (4);
%! t = regionprops (a, "majoraxislength");
%! assert (t.MajorAxisLength, 6.4291, 1e-3);
%! t = regionprops (a, "minoraxislength");
%! assert(t.MinorAxisLength, 1.1547 , 1e-3);
%! t = regionprops (a, "eccentricity");
%! assert (t.Eccentricity, 0.98374 , 1e-3);
%! t = regionprops (a, "orientation");
%! assert (t.Orientation, -45);
%! t = regionprops (a, "equivdiameter");
%! assert (t.EquivDiameter, 2.2568, 1e-3);
%!test
%! b = ones (5);
%! t = regionprops (b, "majoraxislength");
%! assert (t.MajorAxisLength, 5.7735 , 1e-3);
%! t = regionprops (b, "minoraxislength");
%! assert (t.MinorAxisLength, 5.7735 , 1e-3);
%! t = regionprops (b, "eccentricity");
%! assert (t.Eccentricity, 0);
%! t = regionprops (b, "orientation");
%! assert (t.Orientation, 0);
%! t = regionprops (b, "equivdiameter");
%! assert (t.EquivDiameter, 5.6419, 1e-3);
%!test
%! c = [0 0 1; 0 1 1; 1 1 0];
%! t = regionprops (c, "minoraxislength");
%! assert (t.MinorAxisLength, 1.8037 , 1e-3);
%! t = regionprops (c, "majoraxislength");
%! assert (t.MajorAxisLength, 4.1633 , 1e-3);
%! t = regionprops (c, "eccentricity");
%! assert (t.Eccentricity, 0.90128 , 1e-3);
%! t = regionprops (c, "orientation");
%! assert (t.Orientation, 45);
%! t = regionprops (c, "equivdiameter");
%! assert (t.EquivDiameter, 2.5231, 1e-3);
%!test
%! f = [0 0 0 0; 1 1 1 1; 0 1 1 1; 0 0 0 0];
%! t = regionprops (f, "Extrema");
%! shouldbe = [0.5 1.5; 4.5 1.5; 4.5 1.5; 4.5 3.5; 4.5 3.5; 1.5 3.5; 0.5 2.5; 0.5 1.5];
%! assert (t.Extrema, shouldbe, eps);
%!test
%! bw = false (5);
%! bw([8 12 13 14 18]) = true;
%! extrema = [2 1; 3 1; 4 2; 4 3; 3 4; 2 4; 1 3; 1 2] + 0.5;
%! assert (regionprops (bw, "extrema"), struct ("Extrema", extrema))
%!test
%! ext1 = [1 0; 5 0; 6 1; 6 2; 2 3; 1 3; 1 3; 1 0] + 0.5;
%! ext2 = [3 3; 6 3; 6 3; 6 5; 6 5; 2 5; 2 5; 2 4] + 0.5;
%! assert (regionprops (bw2d, "extrema"), struct ("Extrema", {ext1; ext2}))
%!assert (regionprops (bw2d, "equivDiameter"),
%! struct ("EquivDiameter", {sqrt(4*8/pi); sqrt(4*6/pi)}))
%!assert (regionprops (bw2d_over_bb, "equivDiameter"),
%! struct ("EquivDiameter", {sqrt(4*7/pi); sqrt(4*8/pi); sqrt(4*4/pi)}))
%!assert (regionprops (bw2d_insides, "equivDiameter"),
%! struct ("EquivDiameter", {sqrt(4*20/pi); sqrt(4*4/pi)}))
## Test the diameter of a circle of diameter 21.
%!test
%! I = zeros (40);
%! disk = fspecial ("disk",10);
%! disk = disk ./ max (disk(:));
%! I(10:30, 10:30) = disk;
%! bw = im2bw (I, 0.5);
%! props = regionprops (bw, "Perimeter");
%! assert (props.Perimeter, 10*4 + (sqrt (2) * 4)*4, eps*100)
%!
%! props = regionprops (bwconncomp (bw), "Perimeter");
%! assert (props.Perimeter, 10*4 + (sqrt (2) * 4)*4, eps*100)
%!assert (regionprops (bw2d, "Perimeter"),
%! struct ("Perimeter", {(sqrt (2)*6 + 4); (sqrt (2)*3 + 4)}), eps*10)
## Test Perimeter with nested objects
%!assert (regionprops (bw2d_insides, "Perimeter"),
%! struct ("Perimeter", {20; 4}))
%!assert (regionprops (bwconncomp (bw2d_insides), "Perimeter"),
%! struct ("Perimeter", {20; 4}))
## Test guessing between labelled and binary image
%!assert (regionprops ([1 0 1; 1 0 1], "Area"), struct ("Area", 4))
%!assert (regionprops ([1 0 2; 1 1 2], "Area"), struct ("Area", {3; 2}))
## Test missing labels
%!assert (regionprops ([1 0 3; 1 1 3], "Area"), struct ("Area", {3; 0; 2}))
## Test dimensionality of struct array
%!assert (size (regionprops ([1 0 0; 0 0 2], "Area")), [2, 1])
%!error <L must be non-negative integers> regionprops ([1 -2 0 3])
%!error <L must be non-negative integers> regionprops ([1 1.5 0 3])
## Test for BW images with zero objects
%!test
%! im = rand (5);
%!
%! ## First do this so we get a list of all supported properties and don't
%! ## have to update the list each time.
%! bw = false (5);
%! bw(13) = true;
%! props = regionprops (bw, im, "all");
%! all_props = fieldnames (props);
%!
%! bw = false (5);
%! props = regionprops (bw, im, "all");
%! assert (size (props), [0 1])
%! assert (sort (all_props), sort (fieldnames (props)))
## Test for labeled images with zeros objects
%!test
%! im = rand (5);
%!
%! ## First do this so we get a list of all supported properties and don't
%! ## have to update the list each time.
%! labeled = zeros (5);
%! labeled(13) = 1;
%! props = regionprops (labeled, im, "all");
%! all_props = fieldnames (props);
%!
%! labeled = zeros (5);
%! props = regionprops (labeled, im, "all");
%! assert (size (props), [0 1])
%! assert (sort (all_props), sort (fieldnames (props)))
## Test for bwconncomp struct with zeros objects
%!test
%! im = rand (5);
%!
%! ## First do this so we get a list of all supported properties and don't
%! ## have to update the list each time.
%! bw = false (5);
%! bw(13) = true;
%! props = regionprops (bwconncomp (bw), im, "all");
%! all_props = fieldnames (props);
%!
%! bw = false (5);
%! props = regionprops (bwconncomp (bw), im, "all");
%! assert (size (props), [0 1])
%! assert (sort (all_props), sort (fieldnames (props)))
## Test warnings about invalid props for nd images and missing grayscale
%!warning <ignoring perimeter, extrema properties for non 2 dimensional image>
%! regionprops (rand (5, 5, 5) > 0.5, {"perimeter", "extrema"});
%!warning <ignoring minintensity, weightedcentroid properties due to missing grayscale image>
%! regionprops (rand (5, 5) > 0.5, {"minintensity", "weightedcentroid"});
## Input check for labeled images
%!error <L must be non-negative integers only>
%! regionprops ([0 -1 3 4; 0 -1 3 4])
%!error <L must be non-negative integers only>
%! regionprops ([0 1.5 3 4; 0 1.5 3 4])
%!error <L must be non-negative integers only>
%! regionprops (int8 ([0 -1 3 4; 0 -1 3 4]))
%!error <not yet implemented> regionprops (rand (5, 5) > 0.5, "ConvexArea")
%!error <not yet implemented> regionprops (rand (5, 5) > 0.5, "ConvexHull")
%!error <not yet implemented> regionprops (rand (5, 5) > 0.5, "ConvexImage")
%!error <not yet implemented> regionprops (rand (5, 5) > 0.5, "Solidity")
|