This file is indexed.

/usr/share/octave/packages/image-2.6.1/xyz2rgb.m is in octave-image 2.6.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
## Copyright (C) 2015 Hartmut Gimpel
##
## This program is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation; either version 3 of the
## License, or (at your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see
## <http:##www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{rgb} =} xyz2rgb (@var{xyz})
## @deftypefnx {Function File} {@var{rgb_map} =} xyz2rgb (@var{xyz_map})
## Transform a colormap or image from CIE XYZ to sRGB color space.
##
## A color in the CIE XYZ color space consists of three values X, Y and Z.
## Those values are designed to be colorimetric, meaning that their values
## do not depend on the display device hardware.
##
## A color in the RGB space consists of red, green, and blue intensities.
## The output RGB values are calculated to be nonlinear sRGB values
## with the white point D65. This means the output values are in the
## colorimetric (sRGB) colorspace.
##
## Input values of class single and double are acceptecd.
## The shape and the class of the input are conserved.
##
## note: outside the definition range (0<=R, G, B<=1) this function might
##           return different (but also nonsense) values than Matlab.
##
## @seealso{rgb2xyz, rgb2lab, rgb2hsv, rgb2ind, rgb2ntsc}
## @end deftypefn

## Author: Hartmut Gimpel <hg_code@gmx.de>
## algorithm taken from the following book:
## Burger, Burge "Digitale Bildverarbeitung", 3rd edition (2015)

function rgb = xyz2rgb (xyz)

  if (nargin != 1)
    print_usage ();
  endif

  [xyz, cls, sz, is_im, is_nd, is_int] ...
    = colorspace_conversion_input_check ("xyz2rgb", "XYZ", xyz, 1);
  #  only accept single and double inputs because valid xyz values can be >1

  ## transform from CIE XYZ to linear sRGB values with whitepoint D65
  ## (source of matrix: book of Burger)
  matrix_xyz2rgb_D65 = ...
    [3.240479, -1.537150, -0.498535;
    -0.969256, 1.875992, 0.041556;
    0.055648, -0.204043, 1.057311];

  # Matlab uses the following slightly different conversion matrix
  # matrix_xyz2rgb_D65 = ...
  #  [3.2406, -1.5372, -0.4986;
  #  -0.9689, 1.8758, 0.0415;
  #  0.0557, -0.2040, 1.0570];

  rgb_lin = xyz * matrix_xyz2rgb_D65';

  ## transform from linear sRGB values to non-linear sRGB values
  ##  (modified gamma transform)
  rgb = rgb_lin;
  mask = rgb_lin <= 0.0031308;
  rgb(mask) = 12.92 .* rgb_lin(mask);
  rgb(! mask) = 1.055 .* (rgb_lin(! mask) .^ (1/2.4)) -0.055;

  rgb = colorspace_conversion_revert (rgb, cls, sz, is_im, is_nd, is_int, 0);

endfunction

## Test pure colors, gray and some other colors
## (This set of test values is taken from the book by Burger.)
%!assert (xyz2rgb ([0, 0, 0]), [0 0 0], 1e-3)
%!assert (xyz2rgb ([0.4125, 0.2127, 0.0193]), [1 0 0], 1e-3)
%!assert (xyz2rgb ([0.7700, 0.9278, 0.1385]), [1 1 0], 1e-3)
%!assert (xyz2rgb ([0.3576, 0.7152, 0.1192]), [0 1 0], 1e-3)
%!assert (xyz2rgb ([0.5380, 0.7873, 1.0694]), [0 1 1], 1e-3)
%!assert (xyz2rgb ([0.1804, 0.07217, 0.9502]), [0 0 1], 1e-3)
%!assert (xyz2rgb ([0.5929, 0.28484, 0.9696]), [1 0 1], 1e-3)
%!assert (xyz2rgb ([0.9505, 1.0000, 1.0888]), [1 1 1], 1e-3)
%!assert (xyz2rgb ([0.2034, 0.2140, 0.2330]), [0.5 0.5 0.5], 1e-3)
%!assert (xyz2rgb ([0.2155, 0.1111, 0.0101]), [0.75 0 0], 1e-3)
%!assert (xyz2rgb ([0.0883, 0.0455, 0.0041]), [0.5 0 0], 1e-3)
%!assert (xyz2rgb ([0.0210, 0.0108, 0.0010]), [0.25 0 0], 1e-3)
%!assert (xyz2rgb ([0.5276, 0.3812, 0.2482]), [1 0.5 0.5], 1e-3)

## Test tolarant input checking on floats
%!assert (xyz2rgb ([1.5 1 1]), [1.5712, 0.7109   0.9717], 1e-3)

%!test
%! xyz_map = rand (64, 3);
%! assert (rgb2xyz (xyz2rgb (xyz_map)), xyz_map, 3e-4);
%!test
%! xyz_img = rand (64, 64, 3);
%! assert (rgb2xyz (xyz2rgb (xyz_img)), xyz_img, 3e-4);

## support sparse input  (the only useful xyz value with zeros is black)
%!assert (xyz2rgb (sparse ([0 0 0])), [0 0 0], 1e-3)

## conserve class of single input
%!assert (class (xyz2rgb (single([0.5 0.5 0.5]))), 'single')

## Test input validation
%!error xyz2rgb ()
%!error xyz2rgb (1,2)
%!error <invalid data type 'cell'> xyz2rgb ({1})
%!error <XYZ must be a colormap or XYZ image> xyz2rgb (ones (2,2))

## Test ND input
%!test
%! xyz = rand (16, 16, 3, 5);
%! rgb = zeros (size (xyz));
%! for i = 1:5
%!   rgb(:,:,:,i) = xyz2rgb (xyz(:,:,:,i));
%! endfor
%! assert (xyz2rgb (xyz), rgb)