/usr/share/octave/packages/image-2.6.1/xyz2rgb.m is in octave-image 2.6.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | ## Copyright (C) 2015 Hartmut Gimpel
##
## This program is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation; either version 3 of the
## License, or (at your option) any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see
## <http:##www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{rgb} =} xyz2rgb (@var{xyz})
## @deftypefnx {Function File} {@var{rgb_map} =} xyz2rgb (@var{xyz_map})
## Transform a colormap or image from CIE XYZ to sRGB color space.
##
## A color in the CIE XYZ color space consists of three values X, Y and Z.
## Those values are designed to be colorimetric, meaning that their values
## do not depend on the display device hardware.
##
## A color in the RGB space consists of red, green, and blue intensities.
## The output RGB values are calculated to be nonlinear sRGB values
## with the white point D65. This means the output values are in the
## colorimetric (sRGB) colorspace.
##
## Input values of class single and double are acceptecd.
## The shape and the class of the input are conserved.
##
## note: outside the definition range (0<=R, G, B<=1) this function might
## return different (but also nonsense) values than Matlab.
##
## @seealso{rgb2xyz, rgb2lab, rgb2hsv, rgb2ind, rgb2ntsc}
## @end deftypefn
## Author: Hartmut Gimpel <hg_code@gmx.de>
## algorithm taken from the following book:
## Burger, Burge "Digitale Bildverarbeitung", 3rd edition (2015)
function rgb = xyz2rgb (xyz)
if (nargin != 1)
print_usage ();
endif
[xyz, cls, sz, is_im, is_nd, is_int] ...
= colorspace_conversion_input_check ("xyz2rgb", "XYZ", xyz, 1);
# only accept single and double inputs because valid xyz values can be >1
## transform from CIE XYZ to linear sRGB values with whitepoint D65
## (source of matrix: book of Burger)
matrix_xyz2rgb_D65 = ...
[3.240479, -1.537150, -0.498535;
-0.969256, 1.875992, 0.041556;
0.055648, -0.204043, 1.057311];
# Matlab uses the following slightly different conversion matrix
# matrix_xyz2rgb_D65 = ...
# [3.2406, -1.5372, -0.4986;
# -0.9689, 1.8758, 0.0415;
# 0.0557, -0.2040, 1.0570];
rgb_lin = xyz * matrix_xyz2rgb_D65';
## transform from linear sRGB values to non-linear sRGB values
## (modified gamma transform)
rgb = rgb_lin;
mask = rgb_lin <= 0.0031308;
rgb(mask) = 12.92 .* rgb_lin(mask);
rgb(! mask) = 1.055 .* (rgb_lin(! mask) .^ (1/2.4)) -0.055;
rgb = colorspace_conversion_revert (rgb, cls, sz, is_im, is_nd, is_int, 0);
endfunction
## Test pure colors, gray and some other colors
## (This set of test values is taken from the book by Burger.)
%!assert (xyz2rgb ([0, 0, 0]), [0 0 0], 1e-3)
%!assert (xyz2rgb ([0.4125, 0.2127, 0.0193]), [1 0 0], 1e-3)
%!assert (xyz2rgb ([0.7700, 0.9278, 0.1385]), [1 1 0], 1e-3)
%!assert (xyz2rgb ([0.3576, 0.7152, 0.1192]), [0 1 0], 1e-3)
%!assert (xyz2rgb ([0.5380, 0.7873, 1.0694]), [0 1 1], 1e-3)
%!assert (xyz2rgb ([0.1804, 0.07217, 0.9502]), [0 0 1], 1e-3)
%!assert (xyz2rgb ([0.5929, 0.28484, 0.9696]), [1 0 1], 1e-3)
%!assert (xyz2rgb ([0.9505, 1.0000, 1.0888]), [1 1 1], 1e-3)
%!assert (xyz2rgb ([0.2034, 0.2140, 0.2330]), [0.5 0.5 0.5], 1e-3)
%!assert (xyz2rgb ([0.2155, 0.1111, 0.0101]), [0.75 0 0], 1e-3)
%!assert (xyz2rgb ([0.0883, 0.0455, 0.0041]), [0.5 0 0], 1e-3)
%!assert (xyz2rgb ([0.0210, 0.0108, 0.0010]), [0.25 0 0], 1e-3)
%!assert (xyz2rgb ([0.5276, 0.3812, 0.2482]), [1 0.5 0.5], 1e-3)
## Test tolarant input checking on floats
%!assert (xyz2rgb ([1.5 1 1]), [1.5712, 0.7109 0.9717], 1e-3)
%!test
%! xyz_map = rand (64, 3);
%! assert (rgb2xyz (xyz2rgb (xyz_map)), xyz_map, 3e-4);
%!test
%! xyz_img = rand (64, 64, 3);
%! assert (rgb2xyz (xyz2rgb (xyz_img)), xyz_img, 3e-4);
## support sparse input (the only useful xyz value with zeros is black)
%!assert (xyz2rgb (sparse ([0 0 0])), [0 0 0], 1e-3)
## conserve class of single input
%!assert (class (xyz2rgb (single([0.5 0.5 0.5]))), 'single')
## Test input validation
%!error xyz2rgb ()
%!error xyz2rgb (1,2)
%!error <invalid data type 'cell'> xyz2rgb ({1})
%!error <XYZ must be a colormap or XYZ image> xyz2rgb (ones (2,2))
## Test ND input
%!test
%! xyz = rand (16, 16, 3, 5);
%! rgb = zeros (size (xyz));
%! for i = 1:5
%! rgb(:,:,:,i) = xyz2rgb (xyz(:,:,:,i));
%! endfor
%! assert (xyz2rgb (xyz), rgb)
|