This file is indexed.

/usr/share/octave/packages/interval-2.1.0/vereigvec.m is in octave-interval 2.1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
## Copyright 2007 Jiří Rohn
## Copyright 2016 Oliver Heimlich
##
## This program is derived from vereigvec in VERSOFT, published on
## 2016-07-26, which is distributed under the terms of the Expat license,
## a.k.a. the MIT license.  Original Author is Jiří Rohn.  Migration to Octave
## code has been performed by Oliver Heimlich.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @documentencoding UTF-8
## @deftypefun {[@var{evc}, @var{lambda}, @var{As}] =} vereigvec (@var{A}, @var{x})
## Verified real eigenvector of an interval matrix.
##
## For a square interval matrix @var{A} and a @emph{real} vector @var{x}, this
## function verifies @var{x} to be an eigenvector of some matrix in @var{A}, or
## not to be an eigenvector of any matrix in @var{A}, or yields no verified
## result (unfortunately, complex eigenvectors cannot be handled yet): 
##
## @table @asis
## @item @var{evc} = 1
## @var{x} is verified to be an eigenvector of some matrix in @var{A},
## @var{lambda} is an interval number such that for each
## @var{lambda0} ∈ @var{lambda}, @var{A} is verified to contain a matrix having
## (@var{lamda0}, @var{x}) as an eigenpair,
## @var{As} is a very tight interval matrix verified to contain 
## a matrix having (mid (@var{lambda}), @var{x}) as an eigenpair,
##
## @item @var{evc} = 0
## @var{x} is verified not to be an eigenvector of any matrix in @var{A},
## @var{lambda} and @var{As} consist of empty intervals,
##
## @item @var{evc} = -1
## no verified result (data may be wrong).
## @end table
##
## Based on the section “Real eigenvectors” in
## J. Rohn, A handbook of results on interval linear problems,
## posted at @url{http://www.cs.cas.cz/~rohn}.
##
## This work was supported by the Czech Republic National Research
## Program “Information Society”, project 1ET400300415. 
##
## @seealso{eig}
## @end deftypefun

## Author: Jiří Rohn
## Keywords: interval
## Created: 2007

function [evc, lambda, As] = vereigvec (A, x)

if (nargin ~= 2)
    print_usage ();
    return
endif

x = x(:);
p = length(x);
[m, n] = size (A);

if (m ~= n)
    error ("vereigvec: matrix is not square");
elseif (n ~= p)
    error ("vereigvec: sizes do not match");
elseif (~isreal (x) || isequal (x, zeros (p, 1)))
    error ("vereigvec: wrong data");
endif

if (~isa (A, "infsup"))
    if (~isreal (A))
        error ("vereigvec: wrong data");
    endif
    A = infsup (A); # allows for real input
endif

## checking the basic inequality
[ac, Delta] = rad (A);
z = sgn (x);
x1 = infsup (x); # x double, x1 intval
Tz = infsup (diag (z));
left = Tz * (ac - Tz * Delta * Tz) * x1 * x1' * Tz; # left-hand side of the inequality
right = Tz * x1 * x1' * (ac + Tz * Delta * Tz)' * Tz; # right-hand side of the inequality

## inequality verified not to be satisfied
if (any ((right.sup < left.inf)(:)))
    ## verified not to be an eigenvector
    evc = 0; 
    lambda = infsup ();
    As = repmat (infsup (), n, n);
    return
endif

## inequality verified to be satisfied
if (all (all (left.sup <= right.inf))) # verified to be an eigenvector; Rohn, SIMAX 1993, Thm. 4.1
    B = find (x ~= 0);
    denleft = (Tz * ac * Tz - Delta) * abs (x);                 
    denright = (Tz * ac * Tz + Delta) * abs (x);                
    num = abs (x);
    denleft = denleft(B);
    denright = denright(B);
    num = num(B);
    left = denleft ./ num;     # left  ratio
    right = denright ./ num;   # right ratio
    lambdal = max (left.sup);  # verified lower bound of lambda        
    lambdau = min (right.inf); # verified upper bound of lambda 
    if (lambdal > lambdau)
        ## bounds contradict: no verified solution
        evc = -1; 
        lambda = infsup ();
        As = repmat (infsup (), n, n);
        return
    endif

    lambda = infsup (lambdal, lambdau); # lambda
    lambdam = mid (lambda);             # midpoint of lambda

    ## finding a matrix with eigenpair (lambdam, x)
    A1 = A - lambdam .* eye (n);
    AAs = versingnull (A1, x); # enclosure of a singular matrix in A1 having x as a null vector
    if (isempty (AAs(1, 1)))
        # no enclosure outputted: no verified solution
        evc = -1; 
        lambda = infsup ();
        As = repmat (infsup (), n, n);
        return
    endif

    AAs = AAs + lambdam .* eye (n); # back to A
    if (subset (AAs, A)) # AAs part of A
        ## (lambdam, x) is an eigenpair of a matrix in As; Rohn, SIMAX 1993, proof of Thm. 4.1
        evc = 1;
        As=AAs;  
        return
    endif
    
    ## AAs not a part of A: no verified result
    evc = -1; 
    lambda = infsup ();
    As = repmat (infsup (), n, n);
    return
endif

## no verified result
evc = -1; 
lambda = infsup ();
As = repmat (infsup (), n, n);
endfunction


function As = versingnull (A, x)
## VERSINGNULL    Verified singular matrix in A having x as a null vector.
##
## ~isempty (As(1, 1)): As is a tight interval matrix verified to be a part
##                      of A and to contain a singular matrix having x
##                      as a null vector
##  isempty (As(1, 1)): no result

[m, n] = size (A);
assert (m == n);
z = sgn (x);
xi = infsup (x);
[Ac, Delta] = rad (A);
oeprl = abs (Ac * xi);            # Oettli-Prager inequality, left  side
oeprr = Delta * abs (xi);         # Oettli-Prager inequality, right side
if (all (oeprl.sup <= oeprr.inf)) # Oettli-Prager inequality satisfied, singularity of A verified
    y = (Ac * xi) ./ oeprr;
    y(isempty (y)) = infsup (1, 1); # case of both numerator and denominator being zero
    As = Ac - (diag (y) * Delta) * diag (z); # construction of singular As ...
    As = intersect (As, A);                  # ... in A
    if (~any (any (isempty (As)))) # intersection nowhere empty
        return                     # with output As
    endif
    ## with As of [Empty]'s, but still verified singular (this fact not used here)
endif
As = repmat (infsup (), n, n);
endfunction


function z = sgn (x)
# signum of x for real

n = length (x);
z = ones (n, 1);
z(x < 0) = -1;
endfunction

%!test
%! A = [1 0 0; 0 1 1; 0 0 1];
%! assert (vereigvec (A, [1; 0; 0]), 1);
%! assert (vereigvec (A, [0; 1; 0]), 1);
%! assert (vereigvec (A, [0; 0; 1]), 0);

%!test
%! A = magic (3);
%! [evc, lambda] = vereigvec (A, [1 1 1]);
%! assert (evc, 1);
%! assert (lambda == 15);
%! assert (vereigvec (A, [1; 0; 0]), 0);
%! assert (vereigvec (A, [0; 1; 0]), 0);
%! assert (vereigvec (A, [0; 0; 1]), 0);

%!test
%! A = magic (3) + infsup ("[-5, 5]");
%! [evc, lambda, As] = vereigvec (A, [1 0 0]);
%! assert (evc, 1);
%! assert (lambda == "[3, 13]");
%! assert (ismember ([8 1 6; 0 2 4; 0 5 -2], As));
%! assert (max (max (wid (As))) < 1e-14);