/usr/share/octave/packages/interval-2.1.0/verintlinineqs.m is in octave-interval 2.1.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 | ## Copyright 2007-2008 Jiří Rohn
## Copyright 2016 Oliver Heimlich
##
## This program is derived from verintlinineqs in VERSOFT, published on
## 2016-07-26, which is distributed under the terms of the Expat license,
## a.k.a. the MIT license. Original Author is Jiří Rohn. Migration to Octave
## code has been performed by Oliver Heimlich.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @documentencoding UTF-8
## @deftypefun {[@var{x}, @var{As}] =} verintlinineqs (@var{A}, @var{b})
## Verified strong solution of interval linear inequalities.
##
## For a rectangular interval matrix @var{A} and a matching interval
## vector @var{b}, this function either computes a strong solution @var{x} to
## @display
## @var{A} * @var{x} @leq{} b
## @end display
## (i. e., a real vector @var{x} verified to satisfy
## @var{Ao} * @var{x} @leq{} @var{bo} for each @var{Ao} in @var{A} and @var{bo}
## in @var{b}), or verifies nonexistence of such a solution, or yields no
## verified result:
##
## @table @asis
## @item ~isnan (@var{x})
## @var{x} is a verified strong solution of @var{A} * @var{x} @leq{} @var{b},
## and @var{As} is an interval matrix of empty intervals,
##
## @item ~isempty (@var{As})
## @var{As} is a very right (“almost thin”) interval matrix verified to contain
## a real matrix @var{Ao} such that the system
## @var{Ao} * @var{x} @leq{} @var{b}.inf has no solution (which proves that no
## strong solution exists), and @var{x} is a vector of NaNs,
##
## @item otherwise
## no verified output.
## @end table
##
## A theoretical result [1] asserts that if each system
## @var{Ao} * @var{x} @leq{} @var{bo}, where @var{Ao} in @var{A} and @var{bo}
## in @var{b}, has a solution (depending generally on @var{Ao} and @var{bo}),
## then there exists a vector @var{x} satisfying
## @var{Ao} * @var{x} @leq{} @var{bo} for @emph{each} @var{Ao} in @var{A} and
## @var{bo} in @var{b}. Such a vector @var{x} is called a strong solution of
## the system @var{A} * @var{x} @leq{} @var{b}.
##
## [1] J. Rohn and J. Kreslova, Linear Interval Inequalities, LAMA 38 (1994),
## 79–82.
##
## Based on Section 2.13 in M. Fiedler, J. Nedoma, J. Ramik, J. Rohn and
## K. Zimmermann, Linear Optimization Problems with Inexact Data,
## Springer-Verlag, New York 2006.
##
## This work was supported by the Czech Republic National Research Program
## “Information Society”, project 1ET400300415.
##
## @seealso{}
## @end deftypefun
## Author: Jiří Rohn
## Keywords: interval
## Created: 2007-02-22
function [x, As] = verintlinineqs (A, b)
if (nargin ~= 2)
print_usage ();
return
endif
b = vec (b);
[m, n] = size (A);
x = nan (n, 1);
As = repmat (infsup (), m, n);
if (m ~= length (b))
error ("verintlinineqs: nonconformant arguments")
endif
if (not (isa (A, "infsup"))) # allows for real input
A = infsup (A);
endif
if (not (isa (b, "infsup")))
b = infsup (b);
endif
## the bounds
Al = inf (A);
Au = sup (A);
bl = inf (b);
## matrix of the system; see Fiedler et al., (2.89)
Ao = [Au -Al];
## finds verified nonnegative solution of Ao*x<=bl
[xx, y] = verlinineqnn (Ao, bl);
if (not (isnan (xx(1)))) # solution found
xxi = infsup (xx);
xxi = xxi(1:n) - xxi(n+1:2*n); # interval vector of the original size
## noninterval vectors; candidates for strong solution
X = [xx(1:n)-xx(n+1:2*n) xxi.inf xxi.mid xxi.sup];
[Ac, Delta] = rad (A);
[bc, delta] = rad (b);
for x1 = X
left = Ac * infsup (x1) - bc;
right = -Delta * infsup (abs(x1)) - delta;
if (all (left.sup <= right.inf))
## Fiedler et al., (2.94); strong solution found
x = x1; # verified strong solution
return
endif
endfor
## no result
return
end
if (not (isnan (y(1)))) # Ao*x<=bl verified not to have a nonnegative solution
As = vernull(A', y); # Fiedler et al., proof of Thm. 2.23
if (not (isempty (As(1,1))))
As = As'; # Ao*x<=bl unsolvable for some Ao in As which is a part of A
return
endif
## no result
return
end
## no result
endfunction
function As = vernull (A, x)
# VERNULL Verified matrix in A having x as a null vector.
#
# ~isempty(As(1,1)): As is a tight interval matrix verified to be a part of A
# and to contain a thin matrix Ao having x as a null vector
# (i.e., Ao*x=0),
#
# isempty(As(1,1)): no result.
#
[m, n] = size (A);
p = length (x);
As = repmat (infsup (), m, n);
assert (n == p);
assert (nargin == 2);
assert (isa (A, "infsup"));
assert (not (isa (x, "infsup")));
assert (all (not (isnan (x))));
z = sgn (x);
xi = infsup (x);
[Ac, Delta] = rad (A);
oeprl = abs (Ac * xi); % Oettli-Prager inequality, left side
oeprr = Delta * abs (xi); % Oettli-Prager inequality, right side
if (all (oeprl.sup <= oeprr.inf)) % Oettli-Prager inequality satisfied, x verified null vector of A
y = (Ac * xi) ./ oeprr;
y(isempty (y)) = 1; % case of both numerator and denominator being zero
As = Ac - (diag (y) * Delta) * diag(z); % construction of As ...
As = intersect (As, A); % ... in A
if (not (any (any (isempty(As))))) % intersection nowhere empty
return % with output As
else
As = repmat (infsup (), m, n);
return % with As of [Empty]'s, but x still verified null vector of A
endif
endif
endfunction
function z = sgn (x)
# signum of x for real
n = length (x);
z = ones (n, 1);
z(x < 0) = -1;
endfunction
%!test
%! A = [-2, -3; -2, -1];
%! b = [-1500; -1000];
%! [x, As] = verintlinineqs (A, b);
%! assert (x, [375; 250], 1e-9);
%! assert (all (x >= [375; 250]));
%! assert (all (all (isempty (As))));
|