This file is indexed.

/usr/share/octave/packages/interval-2.1.0/verinvnonneg.m is in octave-interval 2.1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
## Copyright 2008 Jiří Rohn
## Copyright 2016 Oliver Heimlich
##
## This program is derived from verinvnonneg in VERSOFT, published on
## 2016-07-26, which is distributed under the terms of the Expat license,
## a.k.a. the MIT license.  Original Author is Jiří Rohn.  Migration to Octave
## code has been performed by Oliver Heimlich.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @documentencoding UTF-8
## @deftypefun {[nonneg, As] =} verinvnonneg (@var{A})
## Verified nonnegative invertibility of an interval matrix.
##
## For a square interval (or real) matrix @var{A}, this function verifies
## inverse nonnegativity of @var{A}, or not-inverse-nonnegativity of @var{A},
## or yields no verified result: 
##
## @table @asis
## @item @var{nonneg} = 1
## @var{A} verified inverse nonnegative,
##
## @item @var{nonneg} = 0
## @var{A} verified not to be inverse nonnegative; @var{As} is a matrix in
## @var{A} (always one of the two bounds) which is verified not to be inverse
## nonnegative,
##
## @item @var{nonneg = -1}
## no verified result.
## @end table
##
## Based on the result by Kuttler, Math. of Computation 1971; see also J. Rohn,
## A Handbook of Results on Interval Linear Problems, posted at
## @url{http://www.cs.cas.cz/~rohn}, Section 3.9.
##
## This work was supported by the Czech Republic National Research
## Program “Information Society”, project 1ET400300415. 
##
## @seealso{inv}
## @end deftypefun

## Author: Jiří Rohn
## Keywords: interval
## Created: 2008

function [nonneg, As] = verinvnonneg (A)

if (nargin ~= 1)
    print_usage ();
    return
endif

[m, n] = size (A);
nonneg = -1;
As = repmat (infsup, m, n);

if (m ~= n)
    error ("verinvnonneg: matrix not square");
endif

if (~isa (A, "infsup"))
    A = infsup (A); # allows for real input
endif

if (any (isempty (A)(:)))
    # matrix is empty interval: no inverse
    nonneg = 0;
    return
endif

Al = infsup (inf (A), max (-realmax, inf (A)));
Bl = inv (Al); 
if (all (all (issingleton (A))))
    Au = Al;
    Bu = Bl;
else
    Au = infsup (min (realmax, sup (A)), sup (A));
    Bu = inv (Au);
endif

if (any ((isempty (Bl) | isempty (Bu))(:)))
    # empty inverse: no inverse exists
    nonneg = 0;
    return
endif
if (all (all (Bl.inf >= 0)) && all (all (Bu.inf >= 0)))
    # verified inverse nonnegative; Kuttler, Math. of Comp. 1971
    nonneg = 1;
    return
endif
if (any ((Bl.sup < 0)(:)))
    nonneg = 0;
    As=Al; # A.inf verified not inverse nonnegative
    return 
endif
if (any ((Bu.sup < 0)(:)))
    nonneg = 0;
    As = Au; # A.sup verified not inverse nonnegative
    return 
end
endfunction

%!assert (verinvnonneg (eye (1)), 1)
%!assert (verinvnonneg (eye (2)), 1)
%!assert (verinvnonneg (eye (3)), 1)
%!assert (verinvnonneg (eye (4)), 1)
%!assert (verinvnonneg (eye (5)), 1)
%!assert (verinvnonneg (eye (6)), 1)
%!assert (verinvnonneg (eye (7)), 1)
%!assert (verinvnonneg (eye (8)), 1)
%!assert (verinvnonneg (zeros (1)), 0)
%!assert (verinvnonneg (zeros (2)), 0)
%!assert (verinvnonneg (zeros (3)), 0)
%!assert (verinvnonneg (zeros (4)), 0)
%!assert (verinvnonneg (zeros (5)), 0)
%!assert (verinvnonneg (zeros (6)), 0)
%!assert (verinvnonneg (zeros (7)), 0)
%!assert (verinvnonneg (zeros (8)), 0)
%!assert (verinvnonneg (magic (7)), 0)
%!assert (verinvnonneg (infsup (-inf, inf)), -1)