This file is indexed.

/usr/share/octave/packages/interval-2.1.0/verlinineqnn.m is in octave-interval 2.1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
## Copyright 2008 Jiří Rohn
## Copyright 2016 Oliver Heimlich
##
## This program is derived from verlinineqnn in VERSOFT, published on
## 2016-07-26, which is distributed under the terms of the Expat license,
## a.k.a. the MIT license.  Original Author is Jiří Rohn.  Migration to Octave
## code has been performed by Oliver Heimlich.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @documentencoding UTF-8
## @deftypefun {[@var{x}, @var{y}] =} verlinineqnn (@var{A}, @var{b})
## Verified nonnegative solution of a system of linear inequalities.
##
## For a rectangular real matrix @var{A} and a matching real vector @var{b},
## this function either computes a verified solution of the system of linear
## inequalities
## @display
## @var{A} * @var{x} @leq{} b, @*
##           @var{x} @geq{} 0,
## @end display
## or verifies nonexistence of a solution, or yields no verified result.
##
## Possible outputs:
## @itemize @bullet
## @item
## Either @var{x} is a real vector verified to satisfy both inequalities and
## @var{y} is a vector of NaN's,
## 
## @item
## or @var{y} is a real vector verified to satisfy
## @display
## @var{A}' * @var{y} @geq{} 0, @*
##            @var{y} @geq{} 0, @*
## @var{b}' * @var{y} @leq{} -1
## @end display
## (which by Farka's lemma implies nonexistence of a solution to the original
## inequalities), and @var{x} is a vector of NaN's,
##
## @item
## or both @var{x} and @var{y} are NaN's. In this case no verified result could
## be found.
## @end itemize
##
## This work was supported by the Czech Republic National Research Program
## “Information Society”, project 1ET400300415. 
##
## @seealso{linprog}
## @end deftypefun

## Author: Jiří Rohn
## Keywords: interval
## Created: 2008-01-05

function [x, y] = verlinineqnn (A, b)

if (nargin ~= 2)
    print_usage ();
    return
endif

b = b(:);
[m, n] = size (A);

if (m ~= length(b) || ~isreal (A) || ~isreal (b))
    error ("verlinineqnn: Parameters must be real and of matching size");
endif

if (~issparse (A))
    A = sparse (A);
endif
x = verlinineqnninner (A, b);
if (~isnan (x(1)) || nargout < 2)
    y = nan (m, 1);
    return
endif

Ao = [-A'; -speye(m, m); b'];
bo = [zeros(1, n + m), -1]';
y = verlinineqnninner (Ao, bo);
endfunction


function x = verlinineqnninner (A, b)
## inner subroutine of verlinineqnn
## finds a verified solution to A*x<=b, x>=0, or yields a vector of NaN's
## additive and multiplicative perturbation used

[m, n] = size (A);  
ep = max (1e-10, max ([m n 100]) * max ([norm(A, inf) norm(b, inf)]) * eps); 
e = ones (n, 1);
Ao = [A; -speye(n, n)];
bo = [b' zeros(n, 1)']'; # Ao*x<=bo is equivalent to A*x<=b, x>=0

# additive perturbation
bo = bo - ep .* ones (m + n, 1);
x = lpprocedure (e, Ao, bo); # solves min e'*x subject to Ao*x<=bo

left = A * infsup (x); # interval quantity
if (all (left.sup <= b) && all (x >= 0))
    # verified solution
    return
endif

# multiplicative perturbation
bo = bo - ep .* abs (bo) - ep .* (bo == 0);
x = lpprocedure (e, Ao, bo); # solves min e'*x subject to Ao*x<=bo

left = A * infsup (x); # interval quantity
if (all (left.sup <= b) && all (x >= 0))
    # verified solution
    return
endif

# no verified solution
x = nan (n, 1);
endfunction


function x = lpprocedure (c, A, b)
## solves linear programming problem min c'*x subject to A*x<=b
## x should be always assigned (unverified optimal solution, or something else;
## the result is checked afterwards)
## placed separately so that a different linear programming procedure might
## also be used

persistent GLP_MSG_OFF = 0;

[m, n] = size (A);
x = glpk (c, A, b, ...
          [], [], ... # 0 <= x <= inf
          repmat ("U", 1, m), ... # inequality constraint with an upper bound b
          repmat ("C", 1, n), ... # continuous variable x
          1, ... # minimization
          struct ("msglev", GLP_MSG_OFF));

endfunction

%!test
%! A = [-2, -3; -2, -1];
%! b = [-1500; -1000];
%! [x, y] = verlinineqnn (A, b);
%! assert (x, [375; 250], 1e-9);
%! assert (all (x >= [375; 250]));
%! assert (isnan (y));

%!test
%! A = [1, 2; 3, 4];
%! b = [-1; 0];
%! [x, y] = verlinineqnn (A, b);
%! assert (y, [1; 0], 1e-9);
%! assert (all (y >= [1; 0]));
%! assert (isnan (x));

%!test
%! A = [1, 2; 3, 4];
%! b = [1; 1];
%! [x, y] = verlinineqnn (A, b);
%! assert (x, [0; 0]);
%! assert (isnan (y));