/usr/share/octave/packages/optim-1.5.2/leasqr.m is in octave-optim 1.5.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 | ## Copyright (C) 1992-1994 Richard Shrager
## Copyright (C) 1992-1994 Arthur Jutan <jutan@charon.engga.uwo.ca>
## Copyright (C) 1992-1994 Ray Muzic <rfm2@ds2.uh.cwru.edu>
## Copyright (C) 2010-2016 Olaf Till <i7tiol@t-online.de>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} leasqr (@var{x}, @var{y}, @var{pin}, @var{F})
## @deftypefnx {Function File} {} leasqr (@var{x}, @var{y}, @var{pin}, @var{F}, @var{stol})
## @deftypefnx {Function File} {} leasqr (@var{x}, @var{y}, @var{pin}, @var{F}, @var{stol}, @var{niter})
## @deftypefnx {Function File} {} leasqr (@var{x}, @var{y}, @var{pin}, @var{F}, @var{stol}, @var{niter}, @var{wt})
## @deftypefnx {Function File} {} leasqr (@var{x}, @var{y}, @var{pin}, @var{F}, @var{stol}, @var{niter}, @var{wt}, @var{dp})
## @deftypefnx {Function File} {} leasqr (@var{x}, @var{y}, @var{pin}, @var{F}, @var{stol}, @var{niter}, @var{wt}, @var{dp}, @var{dFdp})
## @deftypefnx {Function File} {} leasqr (@var{x}, @var{y}, @var{pin}, @var{F}, @var{stol}, @var{niter}, @var{wt}, @var{dp}, @var{dFdp}, @var{options})
## @deftypefnx {Function File} {[@var{f}, @var{p}, @var{cvg}, @var{iter}, @var{corp}, @var{covp}, @var{covr}, @var{stdresid}, @var{Z}, @var{r2}] =} leasqr (@dots{})
## Levenberg-Marquardt nonlinear regression.
##
## Input arguments:
##
## @table @var
## @item x
## Vector or matrix of independent variables.
##
## @item y
## Vector or matrix of observed values.
##
## @item pin
## Vector of initial parameters to be adjusted by leasqr.
##
## @item F
## Name of function or function handle. The function must be of the form
## @code{y = f(x, p)}, with y, x, p of the form @var{y}, @var{x}, @var{pin}.
##
## @item stol
## Scalar tolerance on fractional improvement in scalar sum of squares, i.e.,
## @code{sum ((@var{wt} .* (@var{y}-@var{f}))^2)}. Set to 0.0001 if
## empty or not given;
##
## @item niter
## Maximum number of iterations. Set to 20 if empty or not given.
##
## @item wt
## Statistical weights (same dimensions as @var{y}). These should be
## set to be proportional to @code{sqrt (@var{y}) ^-1}, i.e., the
## covariance matrix of the data is assumed to be proportional to
## diagonal with diagonal equal to @code{(@var{wt}.^2)^-1}. The constant of
## proportionality will be estimated. Set to @code{ones (size
## (@var{y}))} if empty or not given.
##
## @item dp
## Fractional increment of @var{p} for numerical partial derivatives. Set
## to @code{0.001 * ones (size (@var{pin}))} if empty or not given.
##
## @itemize @bullet
## @item dp(j) > 0 means central differences on j-th parameter p(j).
## @item dp(j) < 0 means one-sided differences on j-th parameter p(j).
## @item dp(j) = 0 holds p(j) fixed, i.e., leasqr won't change initial guess: pin(j)
## @end itemize
##
## @item dFdp
## Name of partial derivative function in quotes or function handle. If
## not given or empty, set to @code{dfdp}, a slow but general partial
## derivatives function. The function must be of the form @code{prt =
## dfdp (x, f, p, dp, F [,bounds])}. For backwards compatibility, the
## function will only be called with an extra 'bounds' argument if the
## 'bounds' option is explicitly specified to leasqr (see dfdp.m).
##
## @item options
## Structure with multiple options. The following fields are recognized:
##
## @table @asis
## @item @qcode{fract_prec}
## Column vector (same length as @var{pin})
## of desired fractional precisions in parameter estimates.
## Iterations are terminated if change in parameter vector (chg)
## relative to current parameter estimate is less than their
## corresponding elements in 'fract_prec', i.e.,
## @code{all (abs (chg) < abs (options.fract_prec .* current_parm_est))} on two
## consecutive iterations. Defaults to @code{zeros (size (@var{pin}))}.
##
## @item @qcode{max_fract_change}
## Column vector (same length as @var{pin}) of maximum fractional step
## changes in parameter vector.
## Fractional change in elements of parameter vector is constrained to
## be at most 'max_fract_change' between sucessive iterations, i.e.,
## @code{abs (chg(i)) = abs (min([chg(i), options.max_fract_change(i) * current param estimate]))}.
## Defaults to @code{Inf * ones (size (@var{pin}))}.
##
## @item @qcode{inequc}
## Cell-array containing up to four entries,
## two entries for linear inequality constraints and/or one or two
## entries for general inequality constraints. Initial parameters
## must satisfy these constraints. Either linear or general
## constraints may be the first entries, but the two entries for
## linear constraints must be adjacent and, if two entries are given
## for general constraints, they also must be adjacent. The two
## entries for linear constraints are a matrix (say m) and a vector
## (say v), specifying linear inequality constraints of the form
## `m.' * parameters + v >= 0'. If the constraints are just bounds,
## it is suggested to specify them in 'options.bounds' instead,
## since then some sanity tests are performed, and since the
## function 'dfdp.m' is guarantied not to violate constraints during
## determination of the numeric gradient only for those constraints
## specified as 'bounds' (possibly with violations due to a certain
## inaccuracy, however, except if no constraints except bounds are
## specified). The first entry for general constraints must be a
## differentiable vector valued function (say h), specifying general
## inequality constraints of the form `h (p[, idx]) >= 0'; p is the
## column vector of optimized paraters and the optional argument idx
## is a logical index. h has to return the values of all constraints
## if idx is not given, and has to return only the indexed
## constraints if idx is given (so computation of the other
## constraints can be spared). If a second entry for general
## constraints is given, it must be a function (say dh) which
## returnes a matrix whos rows contain the gradients of the
## constraint function h with respect to the optimized parameters.
## It has the form jac_h = dh (vh, p, dp, h, idx[, bounds]); p is
## the column vector of optimized parameters, and idx is a logical
## index --- only the rows indexed by idx must be returned (so
## computation of the others can be spared). The other arguments of
## dh are for the case that dh computes numerical gradients: vh is
## the column vector of the current values of the constraint
## function h, with idx already applied. h is a function h (p) to
## compute the values of the constraints for parameters p, it will
## return only the values indexed by idx. dp is a suggestion for
## relative step width, having the same value as the argument 'dp'
## of leasqr above. If bounds were specified to leasqr, they are
## provided in the argument bounds of dh, to enable their
## consideration in determination of numerical gradients. If dh is
## not specified to leasqr, numerical gradients are computed in the
## same way as with 'dfdp.m' (see above). If some constraints are
## linear, they should be specified as linear constraints (or
## bounds, if applicable) for reasons of performance, even if
## general constraints are also specified.
##
## @item @qcode{bounds}
## Two-column-matrix, one row for each
## parameter in @var{pin}. Each row contains a minimal and maximal value
## for each parameter. Default: [-Inf, Inf] in each row. If this
## field is used with an existing user-side function for 'dFdp'
## (see above) the functions interface might have to be changed.
##
## @item @qcode{equc}
## Equality constraints, specified the same
## way as inequality constraints (see field 'options.inequc').
## Initial parameters must satisfy these constraints.
## Note that there is possibly a certain inaccuracy in honoring
## constraints, except if only bounds are specified.
## @emph{Warning}: If constraints (or bounds) are set, returned guesses
## of @var{corp}, @var{covp}, and @var{Z} are generally invalid, even if
## no constraints
## are active for the final parameters. If equality constraints are
## specified, @var{corp}, @var{covp}, and @var{Z} are not guessed at all.
##
## @item @qcode{cpiv}
## Function for complementary pivot algorithm
## for inequality constraints. Defaults to cpiv_bard. No different
## function is supplied.
##
## @end table
##
## For backwards compatibility, @var{options} can also be a matrix whose
## first and second column contains the values of @qcode{fract_prec} and
## @qcode{max_fract_change}, respectively.
##
## @end table
##
## Output:
##
## @table @var
## @item f
## Column vector of values computed: f = F(x,p).
##
## @item p
## Column vector trial or final parameters, i.e, the solution.
##
## @item cvg
## Scalar: = 1 if convergence, = 0 otherwise.
##
## @item iter
## Scalar number of iterations used.
##
## @item corp
## Correlation matrix for parameters.
##
## @item covp
## Covariance matrix of the parameters.
##
## @item covr
## Diag(covariance matrix of the residuals).
##
## @item stdresid
## Standardized residuals.
##
## @item Z
## Matrix that defines confidence region (see comments in the source).
##
## @item r2
## Coefficient of multiple determination, intercept form.
##
## @end table
##
## Not suitable for non-real residuals.
##
## References:
## Bard, Nonlinear Parameter Estimation, Academic Press, 1974.
## Draper and Smith, Applied Regression Analysis, John Wiley and Sons, 1981.
##
## @end deftypefn
function [f,p,cvg,iter,corp,covp,covr,stdresid,Z,r2]= ...
leasqr(x,y,pin,F,stol,niter,wt,dp,dFdp,options)
## The following two blocks of comments are chiefly from the original
## version for Matlab. For later changes the logs of the Octave Forge
## svn repository should also be consulted.
## A modified version of Levenberg-Marquardt
## Non-Linear Regression program previously submitted by R.Schrager.
## This version corrects an error in that version and also provides
## an easier to use version with automatic numerical calculation of
## the Jacobian Matrix. In addition, this version calculates statistics
## such as correlation, etc....
##
## Version 3 Notes
## Errors in the original version submitted by Shrager (now called
## version 1) and the improved version of Jutan (now called version 2)
## have been corrected.
## Additional features, statistical tests, and documentation have also been
## included along with an example of usage. BEWARE: Some the the input and
## output arguments were changed from the previous version.
##
## Ray Muzic <rfm2@ds2.uh.cwru.edu>
## Arthur Jutan <jutan@charon.engga.uwo.ca>
## Richard I. Shrager (301)-496-1122
## Modified by A.Jutan (519)-679-2111
## Modified by Ray Muzic 14-Jul-1992
## 1) add maxstep feature for limiting changes in parameter estimates
## at each step.
## 2) remove forced columnization of x (x=x(:)) at beginning. x
## could be a matrix with the ith row of containing values of
## the independent variables at the ith observation.
## 3) add verbose option
## 4) add optional return arguments covp, stdresid, chi2
## 5) revise estimates of corp, stdev
## Modified by Ray Muzic 11-Oct-1992
## 1) revise estimate of Vy. remove chi2, add Z as return values
## (later remark: the current code contains no variable Vy)
## Modified by Ray Muzic 7-Jan-1994
## 1) Replace ones(x) with a construct that is compatible with versions
## newer and older than v 4.1.
## 2) Added global declaration of verbose (needed for newer than v4.x)
## 3) Replace return value var, the variance of the residuals
## with covr, the covariance matrix of the residuals.
## 4) Introduce options as 10th input argument. Include
## convergence criteria and maxstep in it.
## 5) Correct calculation of xtx which affects coveraince estimate.
## 6) Eliminate stdev (estimate of standard deviation of
## parameter estimates) from the return values. The covp is a
## much more meaningful expression of precision because it
## specifies a confidence region in contrast to a confidence
## interval.. If needed, however, stdev may be calculated as
## stdev=sqrt(diag(covp)).
## 7) Change the order of the return values to a more logical order.
## 8) Change to more efficent algorithm of Bard for selecting epsL.
## 9) Tighten up memory usage by making use of sparse matrices (if
## MATLAB version >= 4.0) in computation of covp, corp, stdresid.
## Modified by Francesco Potortì
## for use in Octave
## Added linear inequality constraints with quadratic programming to
## this file and special case bounds to this file and to dfdp.m
## (24-Feb-2010) and later also general inequality constraints
## (12-Apr-2010) (Reference: Bard, Y., 'An eclectic approach to
## nonlinear programming', Proc. ANU Sem. Optimization, Canberra,
## Austral. Nat. Univ.). Differences from the reference: adaption to
## svd-based algorithm, linesearch or stepwidth adaptions to ensure
## decrease in objective function omitted to rather start a new
## overall cycle with a new epsL, some performance gains from linear
## constraints even if general constraints are specified. Equality
## constraints also implemented. Olaf Till
## Now split into files leasqr.m and __lm_svd__.m.
__plot_cmds__ (); # flag persistent variables invalid
global verbose;
## argument processing
##
if (nargin < 4)
print_usage ();
endif
if (nargin > 8 && ! isempty (dFdp))
if (ischar (dFdp))
dfdp = str2func (dFdp);
else
dfdp = dFdp;
endif
endif
if (nargin <= 7 || isempty (dp)) dp=.001*(pin*0+1); endif #DT
if (nargin <= 6 || isempty (wt)) wt = ones (size (y)); endif #SMB modification
if (nargin <= 5) niter = []; endif
if (nargin == 4 || isempty (stol)) stol=.0001; endif
if (ischar (F)) F = str2func (F); endif
##
if (any (size (y) ~= size (wt)))
error ("dimensions of observations and weights do not match");
endif
wtl = wt(:);
pin=pin(:); dp=dp(:); #change all vectors to columns
[rows_y, cols_y] = size (y);
m = rows_y * cols_y; n=length(pin);
f_pin = F (x, pin);
if (any (size (f_pin) ~= size (y)))
error ("dimensions of returned values of model function and of observations do not match");
endif
f_pin = y - f_pin;
dFdp = @ (p, dfdp_hook) - dfdp (x, y(:) - dfdp_hook.f, p, dp, F);
## processing of 'options'
pprec = zeros (n, 1);
maxstep = Inf * ones (n, 1);
have_gencstr = false; # no general constraints
have_genecstr = false; # no general equality constraints
n_gencstr = 0;
mc = zeros (n, 0);
vc = zeros (0, 1); rv = 0;
emc = zeros (n, 0);
evc = zeros (0, 1); erv = 0;
bounds = cat (2, -Inf * ones (n, 1), Inf * ones (n, 1));
pin_cstr.inequ.lin_except_bounds = [];;
pin_cstr.inequ.gen = [];;
pin_cstr.equ.lin = [];;
pin_cstr.equ.gen = [];;
dfdp_bounds = {};
cpiv = @ cpiv_bard;
eq_idx = []; # numerical index for equality constraints in all
# constraints, later converted to
# logical index
if (nargin > 9)
if (isnumeric (options)) # backwards compatibility
tp = options;
options = struct ("fract_prec", tp(:, 1));
if (columns (tp) > 1)
options.max_fract_change = tp(:, 2);
endif
endif
if (isfield (options, "cpiv") && ~isempty (options.cpiv))
## As yet there is only one cpiv function distributed with leasqr,
## but this may change; the algorithm of cpiv_bard is said to be
## relatively fast, but may have disadvantages.
if (ischar (options.cpiv))
cpiv = str2func (options.cpiv);
else
cpiv = options.cpiv;
endif
endif
if (isfield (options, "fract_prec"))
pprec = options.fract_prec;
if (any (size (pprec) ~= [n, 1]))
error ("fractional precisions: wrong dimensions");
endif
endif
if (isfield (options, "max_fract_change"))
maxstep = options.max_fract_change;
if (any (size (maxstep) ~= [n, 1]))
error ("maximum fractional step changes: wrong dimensions");
endif
endif
if (isfield (options, "inequc"))
inequc = options.inequc;
if (isnumeric (inequc{1}))
mc = inequc{1};
vc = inequc{2};
if (length (inequc) > 2)
have_gencstr = true;
f_gencstr = inequc{3};
if (length (inequc) > 3)
df_gencstr = inequc{4};
else
df_gencstr = @ dcdp;
endif
endif
else
lid = 0; # no linear constraints
have_gencstr = true;
f_gencstr = inequc{1};
if (length (inequc) > 1)
if (isnumeric (inequc{2}))
lid = 2;
df_gencstr = @ dcdp;
else
df_gencstr = inequc{2};
if (length (inequc) > 2)
lid = 3;
endif
endif
else
df_gencstr = @ dcdp;
endif
if (lid)
mc = inequc{lid};
vc = inequc{lid + 1};
endif
endif
if (have_gencstr)
if (ischar (f_gencstr))
f_gencstr = str2func (f_gencstr);
endif
tp = f_gencstr (pin);
n_gencstr = length (tp);
f_gencstr = @ (p, idx) tf_gencstr (p, idx, f_gencstr);
if (ischar (df_gencstr))
df_gencstr = str2func (df_gencstr);
endif
if (strcmp (func2str (df_gencstr), "dcdp"))
df_gencstr = @ (f, p, dp, idx, db) ...
df_gencstr (f(idx), p, dp, ...
@ (tp) f_gencstr (tp, idx), db{:});
else
df_gencstr = @ (f, p, dp, idx, db) ...
df_gencstr (f(idx), p, dp, ...
@ (tp) f_gencstr (tp, idx), idx, db{:});
endif
endif
[rm, cm] = size (mc);
[rv, cv] = size (vc);
if (rm ~= n || cm ~= rv || cv ~= 1)
error ("linear inequality constraints: wrong dimensions");
endif
pin_cstr.inequ.lin_except_bounds = mc.' * pin + vc;
if (have_gencstr)
pin_cstr.inequ.gen = tp;
endif
endif
if (isfield (options, "equc"))
equc = options.equc;
if (isnumeric (equc{1}))
emc = equc{1};
evc = equc{2};
if (length (equc) > 2)
have_genecstr = true;
f_genecstr = equc{3};
if (length (equc) > 3)
df_genecstr = equc{4};
else
df_genecstr = @ dcdp;
endif
endif
else
lid = 0; # no linear constraints
have_genecstr = true;
f_genecstr = equc{1};
if (length (equc) > 1)
if (isnumeric (equc{2}))
lid = 2;
df_genecstr = @ dcdp;
else
df_genecstr = equc{2};
if (length (equc) > 2)
lid = 3;
endif
endif
else
df_genecstr = @ dcdp;
endif
if (lid)
emc = equc{lid};
evc = equc{lid + 1};
endif
endif
if (have_genecstr)
if (ischar (f_genecstr))
f_genecstr = str2func (f_genecstr);
endif
tp = f_genecstr (pin);
n_genecstr = length (tp);
f_genecstr = @ (p, idx) tf_gencstr (p, idx, f_genecstr);
if (ischar (df_genecstr))
df_genecstr = str2func (df_genecstr);
endif
if (strcmp (func2str (df_genecstr), "dcdp"))
df_genecstr = @ (f, p, dp, idx, db) ...
df_genecstr (f, p, dp, ...
@ (tp) f_genecstr (tp, idx), db{:});
else
df_genecstr = @ (f, p, dp, idx, db) ...
df_genecstr (f, p, dp, ...
@ (tp) f_genecstr (tp, idx), idx, db{:});
endif
endif
[erm, ecm] = size (emc);
[erv, ecv] = size (evc);
if (erm ~= n || ecm ~= erv || ecv ~= 1)
error ("linear equality constraints: wrong dimensions");
endif
pin_cstr.equ.lin = emc.' * pin + evc;
if (have_genecstr)
pin_cstr.equ.gen = tp;
endif
endif
if (isfield (options, "bounds"))
bounds = options.bounds;
if (any (size (bounds) ~= [n, 2]))
error ("bounds: wrong dimensions");
endif
idx = bounds(:, 1) > bounds(:, 2);
tp = bounds(idx, 2);
bounds(idx, 2) = bounds(idx, 1);
bounds(idx, 1) = tp;
## It is possible to take this decision here, since this frontend
## is used only with one certain backend. The backend will check
## this again; but it will not reference 'dp' in its message,
## thats why the additional check here.
idx = bounds(:, 1) == bounds(:, 2);
if (any (idx))
warning ("leasqr:constraints", "lower and upper bounds identical for some parameters, setting the respective elements of dp to zero");
dp(idx) = 0;
endif
##
tp = eye (n);
lidx = ~isinf (bounds(:, 1));
uidx = ~isinf (bounds(:, 2));
mc = cat (2, mc, tp(:, lidx), - tp(:, uidx));
vc = cat (1, vc, - bounds(lidx, 1), bounds(uidx, 2));
[rm, cm] = size (mc);
[rv, cv] = size (vc);
dfdp_bounds = {bounds};
dFdp = @ (p, dfdp_hook) - dfdp (x, y(:) - dfdp_hook.f, p, dp, ...
F, bounds);
endif
## concatenate inequality and equality constraint functions, mc, and
## vc; update eq_idx, rv, n_gencstr, have_gencstr
if (erv > 0)
mc = cat (2, mc, emc);
vc = cat (1, vc, evc);
eq_idx = rv + 1 : rv + erv;
rv = rv + erv;
endif
if (have_genecstr)
eq_idx = cat (2, eq_idx, ...
rv + n_gencstr + 1 : rv + n_gencstr + n_genecstr);
nidxi = 1 : n_gencstr;
nidxe = n_gencstr + 1 : n_gencstr + n_genecstr;
n_gencstr = n_gencstr + n_genecstr;
if (have_gencstr)
f_gencstr = @ (p, idx) cat (1, ...
f_gencstr (p, idx(nidxi)), ...
f_genecstr (p, idx(nidxe)));
df_gencstr = @ (f, p, dp, idx, db) ...
cat (1, ...
df_gencstr (f(nidxi), p, dp, idx(nidxi), db), ...
df_genecstr (f(nidxe), p, dp, idx(nidxe), db));
else
f_gencstr = f_genecstr;
df_gencstr = df_genecstr;
have_gencstr = true;
endif
endif
endif
if (have_gencstr)
nidxl = 1:rv;
nidxh = rv+1:rv+n_gencstr;
f_cstr = @ (p, idx) ...
cat (1, mc(:, idx(nidxl)).' * p + vc(idx(nidxl), 1), ...
f_gencstr (p, idx(nidxh)));
## in the case of this interface, diffp is already zero at fixed;
## also in this special case, dfdp_bounds can be filled in directly
## --- otherwise it would be a field of hook in the called function
df_cstr = @ (p, idx, dfdp_hook) ...
cat (1, mc(:, idx(nidxl)).', ...
df_gencstr (dfdp_hook.f(nidxh), p, dp, ...
idx(nidxh), ...
dfdp_bounds));
else
f_cstr = @ (p, idx) mc(:, idx).' * p + vc(idx, 1);
df_cstr = @ (p, idx, dfdp_hook) mc(:, idx).';
endif
## in a general interface, check for all(fixed) here
## passed constraints
hook.mc = mc; # matrix of linear constraints
hook.vc = vc; # vector of linear constraints
hook.f_cstr = f_cstr; # function of all constraints
hook.df_cstr = df_cstr; # function of derivatives of all constraints
hook.n_gencstr = n_gencstr; # number of non-linear constraints
hook.eq_idx = false (size (vc, 1) + n_gencstr, 1);
hook.eq_idx(eq_idx) = true; # logical index of equality constraints in
# all constraints
hook.lbound = bounds(:, 1); # bounds, subset of linear inequality
# constraints in mc and vc
hook.ubound = bounds(:, 2);
## passed values of constraints for initial parameters
hook.pin_cstr = pin_cstr;
## passed derivative of model function
hook.dfdp = dFdp;
## passed function for complementary pivoting
hook.cpiv = cpiv;
## passed value of residual function for initial parameters
hook.f_pin = f_pin;
## passed options
hook.max_fract_change = maxstep;
hook.fract_prec = pprec;
hook.TolFun = stol;
hook.MaxIter = niter;
hook.weights = wt;
hook.fixed = dp == 0;
if (verbose)
hook.Display = "iter";
hook.plot_cmd = @ (f) 0; # `plot_cmd' is deprecated
hook.user_interaction = ...
{@ (p, v, s) ...
{ifelse(strcmp(s, "iter"),
false(__plot_cmds__(x, y, y - v.residual)),
false),
[]}{:}};
else
hook.Display = "off";
hook.plot_cmd = @ (f) 0; # `plot_cmd' is deprecated
hook.user_interaction = {};
endif
## only preliminary, for testing
hook.testing = false;
hook.new_s = false;
if (nargin > 9)
if (isfield (options, "testing"))
hook.testing = options.testing;
endif
if (isfield (options, "new_s"))
hook.new_s = options.new_s;
endif
endif
[p, resid, cvg, outp] = __lm_svd__ (@ (p) y - F (x, p), pin, hook);
f = y - resid;
iter = outp.niter;
cvg = cvg > 0;
if (~cvg) disp(' CONVERGENCE NOT ACHIEVED! '); endif
if (~(verbose || nargout > 4)) return; endif
yl = y(:);
f = f(:);
## CALC VARIANCE COV MATRIX AND CORRELATION MATRIX OF PARAMETERS
## re-evaluate the Jacobian at optimal values
jac = dFdp (p, struct ("f", f));
msk = ~hook.fixed;
n = sum(msk); # reduce n to equal number of estimated parameters
jac = jac(:, msk); # use only fitted parameters
## following section is Ray Muzic's estimate for covariance and correlation
## assuming covariance of data is a diagonal matrix proportional to
## diag(1/wt.^2).
## cov matrix of data est. from Bard Eq. 7-5-13, and Row 1 Table 5.1
tp = wtl.^2;
if (exist('sparse')) # save memory
Q = sparse (1:m, 1:m, 1 ./ tp);
Qinv = sparse (1:m, 1:m, tp);
else
Q = diag (ones (m, 1) ./ tp);
Qinv = diag (tp);
endif
resid = resid(:); # un-weighted residuals
if (~isreal (resid)) error ("residuals are not real"); endif
tp = resid.' * Qinv * resid;
covr = (tp / m) * Q; #covariance of residuals
## Matlab compatibility and avoiding recomputation make the following
## logic clumsy.
compute = 1;
if (m <= n || any (eq_idx))
compute = 0;
else
Qinv = ((m - n) / tp) * Qinv;
## simplified Eq. 7-5-13, Bard; cov of parm est, inverse; outer
## parantheses contain inverse of guessed covariance matrix of data
covpinv = jac.' * Qinv * jac;
if (exist ('rcond'))
if (rcond (covpinv) <= eps)
compute = 0;
endif
elseif (rank (covpinv) < n)
## above test is not equivalent to 'rcond' and may unnecessarily
## reject some matrices
compute = 0;
endif
endif
if (compute)
covp = inv (covpinv);
d=sqrt(diag(covp));
corp = covp ./ (d * d.');
else
covp = NA * ones (n);
corp = covp;
endif
if (exist('sparse'))
covr=spdiags(covr,0);
else
covr=diag(covr); # convert returned values to
# compact storage
endif
covr = reshape (covr, rows_y, cols_y);
stdresid = resid .* abs (wtl) / sqrt (tp / m); # equivalent to resid ./
# sqrt (covr)
stdresid = reshape (stdresid, rows_y, cols_y);
if (~(verbose || nargout > 8)) return; endif
if (m > n && ~any (eq_idx))
Z = ((m - n) / (n * resid.' * Qinv * resid)) * covpinv;
else
Z = NA * ones (n);
endif
### alt. est. of cov. mat. of parm.:(Delforge, Circulation, 82:1494-1504, 1990
##disp('Alternate estimate of cov. of param. est.')
##acovp=resid'*Qinv*resid/(m-n)*inv(jac'*Qinv*jac);
if (~(verbose || nargout > 9)) return; endif
##Calculate R^2, intercept form
##
tp = sumsq (yl - mean (yl));
if (tp > 0)
r2 = 1 - sumsq (resid) / tp;
else
r2 = NA;
endif
## if someone has asked for it, let them have it
##
if (verbose)
__plot_cmds__ (x, y, f);
disp(' Least Squares Estimates of Parameters')
disp(p.')
disp(' Correlation matrix of parameters estimated')
disp(corp)
disp(' Covariance matrix of Residuals' )
disp(covr)
disp(' Correlation Coefficient R^2')
disp(r2)
fprintf(" 95%% conf region: F(0.05)(%.0f,%.0f)>= delta_pvec.%s*Z*delta_pvec\n", n, m - n, char (39)); # works with " and '
Z
## runs test according to Bard. p 201.
n1 = sum (resid > 0);
n2 = sum (resid < 0);
nrun=sum(abs(diff(resid > 0)))+1;
if ((n1 > 10) && (n2 > 10)) # sufficent data for test?
zed=(nrun-(2*n1*n2/(n1+n2)+1)+0.5)/(2*n1*n2*(2*n1*n2-n1-n2)...
/((n1+n2)^2*(n1+n2-1)));
if (zed < 0)
prob = erfc(-zed/sqrt(2))/2*100;
disp([num2str(prob),"% chance of fewer than ",num2str(nrun)," runs."]);
else
prob = erfc(zed/sqrt(2))/2*100;
disp([num2str(prob),"% chance of greater than ",num2str(nrun)," runs."]);
endif
endif
endif
endfunction
function ret = tf_gencstr (p, idx, f)
## necessary since user function f_gencstr might return [] or a row
## vector
ret = f (p, idx);
if (isempty (ret))
ret = zeros (0, 1);
elseif (size (ret, 2) > 1)
ret = ret(:);
endif
endfunction
%!demo
%! % Define functions
%! leasqrfunc = @(x, p) p(1) * exp (-p(2) * x);
%! leasqrdfdp = @(x, f, p, dp, func) [exp(-p(2)*x), -p(1)*x.*exp(-p(2)*x)];
%!
%! % generate test data
%! t = [1:10:100]';
%! p = [1; 0.1];
%! data = leasqrfunc (t, p);
%!
%! rnd = [0.352509; -0.040607; -1.867061; -1.561283; 1.473191; ...
%! 0.580767; 0.841805; 1.632203; -0.179254; 0.345208];
%!
%! % add noise
%! % wt1 = 1 /sqrt of variances of data
%! % 1 / wt1 = sqrt of var = standard deviation
%! wt1 = (1 + 0 * t) ./ sqrt (data);
%! data = data + 0.05 * rnd ./ wt1;
%!
%! % Note by Thomas Walter <walter@pctc.chemie.uni-erlangen.de>:
%! %
%! % Using a step size of 1 to calculate the derivative is WRONG !!!!
%! % See numerical mathbooks why.
%! % A derivative calculated from central differences need: s
%! % step = 0.001...1.0e-8
%! % And onesided derivative needs:
%! % step = 1.0e-5...1.0e-8 and may be still wrong
%!
%! F = leasqrfunc;
%! dFdp = leasqrdfdp; % exact derivative
%! % dFdp = dfdp; % estimated derivative
%! dp = [0.001; 0.001];
%! pin = [.8; .05];
%! stol=0.001; niter=50;
%! minstep = [0.01; 0.01];
%! maxstep = [0.8; 0.8];
%! options = [minstep, maxstep];
%!
%! global verbose;
%! verbose = 1;
%! [f1, p1, kvg1, iter1, corp1, covp1, covr1, stdresid1, Z1, r21] = ...
%! leasqr (t, data, pin, F, stol, niter, wt1, dp, dFdp, options);
%!demo
%! %% Example for linear inequality constraints.
%! %% model function:
%! F = @ (x, p) p(1) * exp (p(2) * x);
%! %% independents and dependents:
%! x = 1:5;
%! y = [1, 2, 4, 7, 14];
%! %% initial values:
%! init = [.25; .25];
%! %% other configuration (default values):
%! tolerance = .0001;
%! max_iterations = 20;
%! weights = ones (1, 5);
%! dp = [.001; .001]; % bidirectional numeric gradient stepsize
%! dFdp = "dfdp"; % function for gradient (numerical)
%!
%! %% linear constraints, A.' * parametervector + B >= 0
%! A = [1; -1]; B = 0; % p(1) >= p(2);
%! options.inequc = {A, B};
%!
%! %% start leasqr, be sure that 'verbose' is not set
%! global verbose; verbose = false;
%! [f, p, cvg, iter] = ...
%! leasqr (x, y, init, F, tolerance, max_iterations, ...
%! weights, dp, dFdp, options)
|