This file is indexed.

/usr/share/octave/packages/optim-1.5.2/mdsmax.m is in octave-optim 1.5.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
%% Copyright (C) 2002 N.J.Higham
%% Copyright (C) 2003 Andy Adler <adler@ncf.ca>
%%
%% This program is free software; you can redistribute it and/or modify it under
%% the terms of the GNU General Public License as published by the Free Software
%% Foundation; either version 3 of the License, or (at your option) any later
%% version.
%%
%% This program is distributed in the hope that it will be useful, but WITHOUT
%% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
%% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
%% details.
%%
%% You should have received a copy of the GNU General Public License along with
%% this program; if not, see <http://www.gnu.org/licenses/>.

%%MDSMAX  Multidirectional search method for direct search optimization.
%%        [x, fmax, nf] = MDSMAX(FUN, x0, STOPIT, SAVIT) attempts to
%%        maximize the function FUN, using the starting vector x0.
%%        The method of multidirectional search is used.
%%        Output arguments:
%%               x    = vector yielding largest function value found,
%%               fmax = function value at x,
%%               nf   = number of function evaluations.
%%        The iteration is terminated when either
%%               - the relative size of the simplex is <= STOPIT(1)
%%                 (default 1e-3),
%%               - STOPIT(2) function evaluations have been performed
%%                 (default inf, i.e., no limit), or
%%               - a function value equals or exceeds STOPIT(3)
%%                 (default inf, i.e., no test on function values).
%%        The form of the initial simplex is determined by STOPIT(4):
%%          STOPIT(4) = 0: regular simplex (sides of equal length, the default),
%%          STOPIT(4) = 1: right-angled simplex.
%%        Progress of the iteration is not shown if STOPIT(5) = 0 (default 1).
%%        If a non-empty fourth parameter string SAVIT is present, then
%%        `SAVE SAVIT x fmax nf' is executed after each inner iteration.
%%        NB: x0 can be a matrix.  In the output argument, in SAVIT saves,
%%            and in function calls, x has the same shape as x0.
%%        MDSMAX(fun, x0, STOPIT, SAVIT, P1, P2,...) allows additional
%%        arguments to be passed to fun, via feval(fun,x,P1,P2,...).
%%
%% This implementation uses 2n^2 elements of storage (two simplices), where x0
%% is an n-vector.  It is based on the algorithm statement in [2, sec.3],
%% modified so as to halve the storage (with a slight loss in readability).
%%
%% References:
%% [1] V. J. Torczon, Multi-directional search: A direct search algorithm for
%%     parallel machines, Ph.D. Thesis, Rice University, Houston, Texas, 1989.
% [2] V. J. Torczon, On the convergence of the multidirectional search
%%     algorithm, SIAM J. Optimization, 1 (1991), pp. 123-145.
%% [3] N. J. Higham, Optimization by direct search in matrix computations,
%%     SIAM J. Matrix Anal. Appl, 14(2): 317-333, 1993.
%% [4] N. J. Higham, Accuracy and Stability of Numerical Algorithms,
%%        Second edition, Society for Industrial and Applied Mathematics,
%%        Philadelphia, PA, 2002; sec. 20.5.

% From Matrix Toolbox 
% Copyright (C) 2002 N.J.Higham
% www.maths.man.ac.uk/~higham/mctoolbox
% Modifications for octave by A.Adler 2003

function [x, fmax, nf] = mdsmax(fun, x, stopit, savit, varargin)

x0 = x(:);  % Work with column vector internally.
n = length(x0);

mu = 2;      % Expansion factor.
theta = 0.5; % Contraction factor.

% Set up convergence parameters etc.
if nargin < 3
	stopit(1) = 1e-3;
elseif isempty(stopit)
	stopit(1) = 1e-3;
endif
tol = stopit(1);  % Tolerance for cgce test based on relative size of simplex.
if length(stopit) == 1, stopit(2) = inf; end  % Max no. of f-evaluations.
if length(stopit) == 2, stopit(3) = inf; end  % Default target for f-values.
if length(stopit) == 3, stopit(4) = 0; end    % Default initial simplex.
if length(stopit) == 4, stopit(5) = 1; end    % Default: show progress.
trace  = stopit(5);
if length(stopit) == 5, stopit(6) = 1; end    % Default: maximize
dirn= stopit(6);
if nargin < 4, savit = []; end                   % File name for snapshots.

V = [zeros(n,1) eye(n)]; T = V;
f = zeros(n+1,1); ft = f;
V(:,1) = x0; f(1) = dirn*feval(fun,x,varargin{:});
fmax_old = f(1);

if trace, fprintf('f(x0) = %9.4e\n', f(1)), end

k = 0; m = 0;

% Set up initial simplex.
scale = max(norm(x0,inf),1);
if stopit(4) == 0
   % Regular simplex - all edges have same length.
   % Generated from construction given in reference [18, pp. 80-81] of [1].
   alpha = scale / (n*sqrt(2)) * [ sqrt(n+1)-1+n  sqrt(n+1)-1 ];
   V(:,2:n+1) = (x0 + alpha(2)*ones(n,1)) * ones(1,n);
   for j=2:n+1
       V(j-1,j) = x0(j-1) + alpha(1);
       x(:) = V(:,j); f(j) = dirn*feval(fun,x,varargin{:});
   end
else
   % Right-angled simplex based on co-ordinate axes.
   alpha = scale*ones(n+1,1);
   for j=2:n+1
       V(:,j) = x0 + alpha(j)*V(:,j);
       x(:) = V(:,j); f(j) = dirn*feval(fun,x,varargin{:});
   end
end
nf = n+1;
size = 0;         % Integer that keeps track of expansions/contractions.
flag_break = 0;   % Flag which becomes true when ready to quit outer loop.

while 1    %%%%%% Outer loop.
k = k+1;

% Find a new best vertex  x  and function value  fmax = f(x).
[fmax,j] = max(f);
V(:,[1 j]) = V(:,[j 1]); v1 = V(:,1);
if ~isempty(savit), x(:) = v1; eval(['save ' savit ' x fmax nf']), end
f([1 j]) = f([j 1]);
if trace
   fprintf('Iter. %2.0f,  inner = %2.0f,  size = %2.0f,  ', k, m, size)
   fprintf('nf = %3.0f,  f = %9.4e  (%2.1f%%)\n', nf, fmax, ...
           100*(fmax-fmax_old)/(abs(fmax_old)+eps))
end
fmax_old = fmax;

% Stopping Test 1 - f reached target value?
if fmax >= stopit(3)
   msg = ['Exceeded target...quitting\n'];
   break  % Quit.
end

m = 0;
while 1   %%% Inner repeat loop.
    m = m+1;

    % Stopping Test 2 - too many f-evals?
    if nf >= stopit(2)
       msg = ['Max no. of function evaluations exceeded...quitting\n'];
       flag_break = 1; break  % Quit.
    end

    % Stopping Test 3 - converged?   This is test (4.3) in [1].
    size_simplex = norm(V(:,2:n+1)- v1(:,ones(1,n)),1) / max(1, norm(v1,1));
    if size_simplex <= tol
       msg = sprintf('Simplex size %9.4e <= %9.4e...quitting\n', ...
                      size_simplex, tol);
       flag_break = 1; break  % Quit.
    end

    for j=2:n+1      % ---Rotation (reflection) step.
        T(:,j) = 2*v1 - V(:,j);
        x(:) = T(:,j); ft(j) = dirn*feval(fun,x,varargin{:});
    end
    nf = nf + n;

    replaced = ( max(ft(2:n+1)) > fmax );

    if replaced
       for j=2:n+1   % ---Expansion step.
           V(:,j) = (1-mu)*v1 + mu*T(:,j);
           x(:) = V(:,j); f(j) = dirn*feval(fun,x,varargin{:});
       end
       nf = nf + n;
       % Accept expansion or rotation?
       if max(ft(2:n+1)) > max(f(2:n+1))
          V(:,2:n+1) = T(:,2:n+1);  f(2:n+1) = ft(2:n+1);  % Accept rotation.
       else
          size = size + 1;  % Accept expansion (f and V already set).
       end
    else
       for j=2:n+1   % ---Contraction step.
           V(:,j) = (1+theta)*v1 - theta*T(:,j);
           x(:) = V(:,j); f(j) = dirn*feval(fun,x,varargin{:});
       end
       nf = nf + n;
       replaced = ( max(f(2:n+1)) > fmax );
       % Accept contraction (f and V already set).
       size = size - 1;
    end

    if replaced, break, end
    if (trace && rem(m, 10) == 0)
      fprintf('        ...inner = %2.0f...\n', m);
    end
    end %%% Of inner repeat loop.

if flag_break, break, end
end %%%%%% Of outer loop.

% Finished.
if trace, fprintf(msg), end
x(:) = v1;