/usr/share/octave/packages/optim-1.5.2/mdsmax.m is in octave-optim 1.5.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | %% Copyright (C) 2002 N.J.Higham
%% Copyright (C) 2003 Andy Adler <adler@ncf.ca>
%%
%% This program is free software; you can redistribute it and/or modify it under
%% the terms of the GNU General Public License as published by the Free Software
%% Foundation; either version 3 of the License, or (at your option) any later
%% version.
%%
%% This program is distributed in the hope that it will be useful, but WITHOUT
%% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
%% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
%% details.
%%
%% You should have received a copy of the GNU General Public License along with
%% this program; if not, see <http://www.gnu.org/licenses/>.
%%MDSMAX Multidirectional search method for direct search optimization.
%% [x, fmax, nf] = MDSMAX(FUN, x0, STOPIT, SAVIT) attempts to
%% maximize the function FUN, using the starting vector x0.
%% The method of multidirectional search is used.
%% Output arguments:
%% x = vector yielding largest function value found,
%% fmax = function value at x,
%% nf = number of function evaluations.
%% The iteration is terminated when either
%% - the relative size of the simplex is <= STOPIT(1)
%% (default 1e-3),
%% - STOPIT(2) function evaluations have been performed
%% (default inf, i.e., no limit), or
%% - a function value equals or exceeds STOPIT(3)
%% (default inf, i.e., no test on function values).
%% The form of the initial simplex is determined by STOPIT(4):
%% STOPIT(4) = 0: regular simplex (sides of equal length, the default),
%% STOPIT(4) = 1: right-angled simplex.
%% Progress of the iteration is not shown if STOPIT(5) = 0 (default 1).
%% If a non-empty fourth parameter string SAVIT is present, then
%% `SAVE SAVIT x fmax nf' is executed after each inner iteration.
%% NB: x0 can be a matrix. In the output argument, in SAVIT saves,
%% and in function calls, x has the same shape as x0.
%% MDSMAX(fun, x0, STOPIT, SAVIT, P1, P2,...) allows additional
%% arguments to be passed to fun, via feval(fun,x,P1,P2,...).
%%
%% This implementation uses 2n^2 elements of storage (two simplices), where x0
%% is an n-vector. It is based on the algorithm statement in [2, sec.3],
%% modified so as to halve the storage (with a slight loss in readability).
%%
%% References:
%% [1] V. J. Torczon, Multi-directional search: A direct search algorithm for
%% parallel machines, Ph.D. Thesis, Rice University, Houston, Texas, 1989.
% [2] V. J. Torczon, On the convergence of the multidirectional search
%% algorithm, SIAM J. Optimization, 1 (1991), pp. 123-145.
%% [3] N. J. Higham, Optimization by direct search in matrix computations,
%% SIAM J. Matrix Anal. Appl, 14(2): 317-333, 1993.
%% [4] N. J. Higham, Accuracy and Stability of Numerical Algorithms,
%% Second edition, Society for Industrial and Applied Mathematics,
%% Philadelphia, PA, 2002; sec. 20.5.
% From Matrix Toolbox
% Copyright (C) 2002 N.J.Higham
% www.maths.man.ac.uk/~higham/mctoolbox
% Modifications for octave by A.Adler 2003
function [x, fmax, nf] = mdsmax(fun, x, stopit, savit, varargin)
x0 = x(:); % Work with column vector internally.
n = length(x0);
mu = 2; % Expansion factor.
theta = 0.5; % Contraction factor.
% Set up convergence parameters etc.
if nargin < 3
stopit(1) = 1e-3;
elseif isempty(stopit)
stopit(1) = 1e-3;
endif
tol = stopit(1); % Tolerance for cgce test based on relative size of simplex.
if length(stopit) == 1, stopit(2) = inf; end % Max no. of f-evaluations.
if length(stopit) == 2, stopit(3) = inf; end % Default target for f-values.
if length(stopit) == 3, stopit(4) = 0; end % Default initial simplex.
if length(stopit) == 4, stopit(5) = 1; end % Default: show progress.
trace = stopit(5);
if length(stopit) == 5, stopit(6) = 1; end % Default: maximize
dirn= stopit(6);
if nargin < 4, savit = []; end % File name for snapshots.
V = [zeros(n,1) eye(n)]; T = V;
f = zeros(n+1,1); ft = f;
V(:,1) = x0; f(1) = dirn*feval(fun,x,varargin{:});
fmax_old = f(1);
if trace, fprintf('f(x0) = %9.4e\n', f(1)), end
k = 0; m = 0;
% Set up initial simplex.
scale = max(norm(x0,inf),1);
if stopit(4) == 0
% Regular simplex - all edges have same length.
% Generated from construction given in reference [18, pp. 80-81] of [1].
alpha = scale / (n*sqrt(2)) * [ sqrt(n+1)-1+n sqrt(n+1)-1 ];
V(:,2:n+1) = (x0 + alpha(2)*ones(n,1)) * ones(1,n);
for j=2:n+1
V(j-1,j) = x0(j-1) + alpha(1);
x(:) = V(:,j); f(j) = dirn*feval(fun,x,varargin{:});
end
else
% Right-angled simplex based on co-ordinate axes.
alpha = scale*ones(n+1,1);
for j=2:n+1
V(:,j) = x0 + alpha(j)*V(:,j);
x(:) = V(:,j); f(j) = dirn*feval(fun,x,varargin{:});
end
end
nf = n+1;
size = 0; % Integer that keeps track of expansions/contractions.
flag_break = 0; % Flag which becomes true when ready to quit outer loop.
while 1 %%%%%% Outer loop.
k = k+1;
% Find a new best vertex x and function value fmax = f(x).
[fmax,j] = max(f);
V(:,[1 j]) = V(:,[j 1]); v1 = V(:,1);
if ~isempty(savit), x(:) = v1; eval(['save ' savit ' x fmax nf']), end
f([1 j]) = f([j 1]);
if trace
fprintf('Iter. %2.0f, inner = %2.0f, size = %2.0f, ', k, m, size)
fprintf('nf = %3.0f, f = %9.4e (%2.1f%%)\n', nf, fmax, ...
100*(fmax-fmax_old)/(abs(fmax_old)+eps))
end
fmax_old = fmax;
% Stopping Test 1 - f reached target value?
if fmax >= stopit(3)
msg = ['Exceeded target...quitting\n'];
break % Quit.
end
m = 0;
while 1 %%% Inner repeat loop.
m = m+1;
% Stopping Test 2 - too many f-evals?
if nf >= stopit(2)
msg = ['Max no. of function evaluations exceeded...quitting\n'];
flag_break = 1; break % Quit.
end
% Stopping Test 3 - converged? This is test (4.3) in [1].
size_simplex = norm(V(:,2:n+1)- v1(:,ones(1,n)),1) / max(1, norm(v1,1));
if size_simplex <= tol
msg = sprintf('Simplex size %9.4e <= %9.4e...quitting\n', ...
size_simplex, tol);
flag_break = 1; break % Quit.
end
for j=2:n+1 % ---Rotation (reflection) step.
T(:,j) = 2*v1 - V(:,j);
x(:) = T(:,j); ft(j) = dirn*feval(fun,x,varargin{:});
end
nf = nf + n;
replaced = ( max(ft(2:n+1)) > fmax );
if replaced
for j=2:n+1 % ---Expansion step.
V(:,j) = (1-mu)*v1 + mu*T(:,j);
x(:) = V(:,j); f(j) = dirn*feval(fun,x,varargin{:});
end
nf = nf + n;
% Accept expansion or rotation?
if max(ft(2:n+1)) > max(f(2:n+1))
V(:,2:n+1) = T(:,2:n+1); f(2:n+1) = ft(2:n+1); % Accept rotation.
else
size = size + 1; % Accept expansion (f and V already set).
end
else
for j=2:n+1 % ---Contraction step.
V(:,j) = (1+theta)*v1 - theta*T(:,j);
x(:) = V(:,j); f(j) = dirn*feval(fun,x,varargin{:});
end
nf = nf + n;
replaced = ( max(f(2:n+1)) > fmax );
% Accept contraction (f and V already set).
size = size - 1;
end
if replaced, break, end
if (trace && rem(m, 10) == 0)
fprintf(' ...inner = %2.0f...\n', m);
end
end %%% Of inner repeat loop.
if flag_break, break, end
end %%%%%% Of outer loop.
% Finished.
if trace, fprintf(msg), end
x(:) = v1;
|