/usr/share/octave/packages/optim-1.5.2/nlinfit.m is in octave-optim 1.5.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | ## Copyright (C) 2015 Asma Afzal
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} nlinfit (@var{X}, @var{Y}, @var{modelfun}, @var{beta0})
## @deftypefnx {Function File} {} nlinfit (@var{X}, @var{Y}, @var{modelfun}, @var{beta0}, @var{options})
## @deftypefnx {Function File} {} nlinfit (@dots{}, @var{Name}, @var{Value})
## @deftypefnx {Function File} {[@var{beta}, @var{R}, @var{J}, @var{CovB}, @var{MSE}] =} nlinfit (@dots{})
## Nonlinear Regression.
##
## @example
## @group
## min [EuclidianNorm (Y - modelfun (beta, X))] ^ 2
## beta
## @end group
## @end example
##
## @var{X} is a matrix of independents, @var{Y} is the observed output and @var{modelfun} is the nonlinear regression model function.
## @var{modelfun} should be specified as a function handle, which
## accepts two inputs: an array of coefficients and an array of
## independents -- in that order.
## The first four input arguments must be provided with non-empty initial guess of the coefficients @var{beta0}.
## @var{Y} and @var{X} must be the same size as the vector (or matrix) returned by @var{fun}.
## @var{options} is a structure containing estimation algorithm options. It can be set using @code{statset}.
## Follwing Matlab compatible options are recognized:
##
## @code{TolFun}
## Minimum fractional improvement in objective function in an iteration
## (termination criterium). Default: 1e-6.
##
## @code{MaxIter}
## Maximum number of iterations allowed. Default: 400.
##
## @code{DerivStep}
## Step size factor. The default is eps^(1/3) for finite differences gradient
## calculation.
##
## @code{Display}
## String indicating the degree of verbosity. Default: "off".
## Currently only supported values are "off" (no messages) and "iter"
## (some messages after each iteration).
##
## Optional @var{Name}, @var{Value} pairs can be provided to set additional options.
## Currently the only applicable name-value pair is 'Weights', w,
## where w is the array of real positive weight factors for the
## squared residuals.
##
## Returned values:
##
## @table @var
## @item beta
## Coefficients to best fit the nonlinear function modelfun (beta, X) to the observed values Y.
##
## @item R
## Value of solution residuals: @code{modelfun (beta, X) - Y}.
## If observation weights are specified then @var{R} is the array of
## weighted residuals: @code{sqrt (weights) .* modelfun (beta, X) - Y}.
##
## @item J
## A matrix where @code{J(i,j)} is the partial derivative of @code{modelfun(i)} with respect to @code{beta(j)}.
## If observation weights are specified, then @var{J} is the weighted
## model function Jacobian: @code{diag (sqrt (weights)) * J}.
##
## @item CovB
##
## Estimated covariance matrix of the fitted coefficients.
##
## @item MSE
## Scalar valued estimate of the variance of error term. If the model Jacobian is full rank, then MSE = (R' * R)/(N-p),
## where N is the number of observations and p is the number of estimated coefficients.
## @end table
##
## This function is a compatibility wrapper. It calls the more general @code{nonlin_curvefit}
## and @code{curvefit_stat} functions internally.
##
## @seealso {nonlin_residmin, nonlin_curvefit, residmin_stat, curvefit_stat}
## @end deftypefn
## Author: Asma Afzal
##
## modified by Olaf Till
## PKG_ADD: [~] = __all_stat_opts__ ("nlinfit");
function varargout = nlinfit (X, Y, modelfun, beta0, varargin)
nargs = nargin ();
TolFun_default = 1e-8;
MaxIter_default = 100;
DerivStep_default = eps ^ (1/3);
if (nargs == 1 && ischar (X) && strcmp (X, "defaults"))
varargout{1} = statset ("DerivStep", DerivStep_default,
"TolFun", TolFun_default,
"MaxIter", MaxIter_default,
"Display", "off");
return;
endif
if (nargs < 4 || nargs==6 || nargs > 7)
print_usage ();
endif
if (! isreal (beta0))
error("Function does not accept complex inputs. Split into real and imaginary parts")
endif
out_args = nargout ();
varargout = cell (1, out_args);
in_args = {modelfun, beta0(:), X, Y};
settings = struct ();
if (nargs >= 5)
if (! isempty (varargin{1}))
## Apply default values which are possibly different from those of
## nonlin_curvefit
DerivStep = statget (varargin{1}, "DerivStep", DerivStep_default);
TolFun = statget (varargin{1}, "TolFun", TolFun_default);
MaxIter = statget (varargin{1}, "MaxIter", MaxIter_default);
Display = statget (varargin{1}, "Display", "off");
if (! strcmpi (Display, "off"))
if (strcmpi (Display, "final"))
Display = "iter";
endif
endif
settings = optimset ("FinDiffRelStep", DerivStep,
"TolFun", TolFun,
"Display", Display,
"MaxIter", MaxIter);
endif
if (nargs == 7)
## Weights are specified in a different way for nonlin_curvefit
if (strcmpi (varargin{2}, "weights") )
weights = sqrt (varargin{3});
if (size(weights) != size(Y))
error ("Weights should be the same size as the observed output Y");
endif
settings = optimset (settings, "weights", weights);
else
error ("Unsupported Name-value pair input.")
endif
endif
in_args{5} = settings;
endif
n_out = max (1, min (out_args, 2));
nlinfit_out = cell (1, n_out);
[nlinfit_out{:}] = nonlin_curvefit (in_args{:});
varargout{1} = nlinfit_out{1};
if (out_args >= 2)
if (nargs == 7)
## Weighted residual
varargout{2} = weights .* (in_args{4} - nlinfit_out{2});
else
varargout{2} = in_args{4} - nlinfit_out{2};
endif
endif
if (out_args >= 3)
info = curvefit_stat (modelfun, nlinfit_out{1}, in_args{3}, in_args{4},
optimset (settings, "ret_dfdp", true,
"ret_covp", true,
"objf_type", "wls"));
if (nargs == 7)
## Weighted Jacobian
varargout{3} = diag (weights(:)) * info.dfdp;
else
varargout{3} = info.dfdp;
endif
endif
if (out_args >= 4)
varargout{4} = info.covp;
endif
if (out_args >= 5)
varargout{5} = (varargout{2}' * varargout{2}) / (numel (in_args{3}) - numel (in_args{2}));
endif
endfunction
%!test
%! modelfun = @(b, x) (b(1) + b(2) * exp (- b(3) * x));
%! b = [1;3;2];
%! xdata = exprnd (2,100,1);
%! ydata = modelfun (b,xdata) + normrnd (0,0.1,100,1);
%! beta0 = [2;2;3];
%! beta = nlinfit(xdata,ydata,modelfun,beta0);
%! assert (beta, [1;3;2], 1e-1)
%!demo
%! modelfun = @(b, x) (b(1) + b(2) * exp (- b(3) * x));
%! %% actual value
%! beta_without_noise = [1; 3; 2];
%! x = [3.49622; 0.33751; 1.25675; 3.66981; 0.26237; 5.51095; ...
%! 2.11407; 1.48774; 6.22436; 2.04519];
%! y_actual = modelfun (beta_without_noise, x);
%! noise = [0.176110; -0.066850; 0.231000; -0.047570; -0.108230; ...
%! 0.122790; 0.062940; 0.151510; 0.116010; -0.097460];
%! y_noisy = y_actual + noise;
%! %% initial guess
%! beta0 = [2; 2; 2];
%! %% weights vector
%! weights = [5; 16; 1; 20; 12; 11; 17; 8; 11; 13];
%! [beta, R, J, covb, mse] = nlinfit (x, y_noisy, modelfun, beta0)
%! [beta_w, R_w, J_w, covb_w, mse_w] = nlinfit (x, y_noisy, modelfun, beta0, [], "weights", weights)
|