/usr/share/octave/packages/optim-1.5.2/nmsmax.m is in octave-optim 1.5.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | %% Copyright (C) 2002 N.J.Higham
%% Copyright (C) 2003 Andy Adler <adler@ncf.ca>
%%
%% This program is free software; you can redistribute it and/or modify it under
%% the terms of the GNU General Public License as published by the Free Software
%% Foundation; either version 3 of the License, or (at your option) any later
%% version.
%%
%% This program is distributed in the hope that it will be useful, but WITHOUT
%% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
%% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
%% details.
%%
%% You should have received a copy of the GNU General Public License along with
%% this program; if not, see <http://www.gnu.org/licenses/>.
%%NMSMAX Nelder-Mead simplex method for direct search optimization.
%% [x, fmax, nf] = NMSMAX(FUN, x0, STOPIT, SAVIT) attempts to
%% maximize the function FUN, using the starting vector x0.
%% The Nelder-Mead direct search method is used.
%% Output arguments:
%% x = vector yielding largest function value found,
%% fmax = function value at x,
%% nf = number of function evaluations.
%% The iteration is terminated when either
%% - the relative size of the simplex is <= STOPIT(1)
%% (default 1e-3),
%% - STOPIT(2) function evaluations have been performed
%% (default inf, i.e., no limit), or
%% - a function value equals or exceeds STOPIT(3)
%% (default inf, i.e., no test on function values).
%% The form of the initial simplex is determined by STOPIT(4):
%% STOPIT(4) = 0: regular simplex (sides of equal length, the default)
%% STOPIT(4) = 1: right-angled simplex.
%% Progress of the iteration is not shown if STOPIT(5) = 0 (default 1).
%% STOPIT(6) indicates the direction (ie. minimization or
%% maximization.) Default is 1, maximization.
%% set STOPIT(6)=-1 for minimization
%% If a non-empty fourth parameter string SAVIT is present, then
%% `SAVE SAVIT x fmax nf' is executed after each inner iteration.
%% NB: x0 can be a matrix. In the output argument, in SAVIT saves,
%% and in function calls, x has the same shape as x0.
%% NMSMAX(fun, x0, STOPIT, SAVIT, P1, P2,...) allows additional
%% arguments to be passed to fun, via feval(fun,x,P1,P2,...).
%% References:
%% N. J. Higham, Optimization by direct search in matrix computations,
%% SIAM J. Matrix Anal. Appl, 14(2): 317-333, 1993.
%% C. T. Kelley, Iterative Methods for Optimization, Society for Industrial
%% and Applied Mathematics, Philadelphia, PA, 1999.
% From Matrix Toolbox
% Copyright (C) 2002 N.J.Higham
% www.maths.man.ac.uk/~higham/mctoolbox
% Modifications for octave by A.Adler 2003
function [x, fmax, nf] = nmsmax(fun, x, stopit, savit, varargin)
persistent warned = false;
if (! warned)
warned = true;
warning ("Octave:deprecated-function",
"`nmsmax' has been deprecated, and will be removed in the future. The function is available with a slightly different interface in core Octave as `fminsearch'.");
endif
x0 = x(:); % Work with column vector internally.
n = length(x0);
% Set up convergence parameters etc.
if (nargin < 3 || isempty(stopit))
stopit(1) = 1e-3;
end
tol = stopit(1); % Tolerance for cgce test based on relative size of simplex.
if length(stopit) == 1, stopit(2) = inf; end % Max no. of f-evaluations.
if length(stopit) == 2, stopit(3) = inf; end % Default target for f-values.
if length(stopit) == 3, stopit(4) = 0; end % Default initial simplex.
if length(stopit) == 4, stopit(5) = 1; end % Default: show progress.
trace = stopit(5);
if length(stopit) == 5, stopit(6) = 1; end % Default: maximize
dirn= stopit(6);
if nargin < 4, savit = []; end % File name for snapshots.
V = [zeros(n,1) eye(n)];
f = zeros(n+1,1);
V(:,1) = x0;
f(1) = dirn*feval(fun,x,varargin{:});
fmax_old = f(1);
if trace, fprintf('f(x0) = %9.4e\n', f(1)), end
k = 0; m = 0;
% Set up initial simplex.
scale = max(norm(x0,inf),1);
if stopit(4) == 0
% Regular simplex - all edges have same length.
% Generated from construction given in reference [18, pp. 80-81] of [1].
alpha = scale / (n*sqrt(2)) * [ sqrt(n+1)-1+n sqrt(n+1)-1 ];
V(:,2:n+1) = (x0 + alpha(2)*ones(n,1)) * ones(1,n);
for j=2:n+1
V(j-1,j) = x0(j-1) + alpha(1);
x(:) = V(:,j);
f(j) = dirn*feval(fun,x,varargin{:});
end
else
% Right-angled simplex based on co-ordinate axes.
alpha = scale*ones(n+1,1);
for j=2:n+1
V(:,j) = x0 + alpha(j)*V(:,j);
x(:) = V(:,j);
f(j) = dirn*feval(fun,x,varargin{:});
end
end
nf = n+1;
how = 'initial ';
[temp,j] = sort(f);
j = j(n+1:-1:1);
f = f(j); V = V(:,j);
alpha = 1; beta = 1/2; gamma = 2;
while 1 %%%%%% Outer (and only) loop.
k = k+1;
fmax = f(1);
if fmax > fmax_old
if ~isempty(savit)
x(:) = V(:,1); eval(['save ' savit ' x fmax nf'])
end
end
if trace
fprintf('Iter. %2.0f,', k)
fprintf([' how = ' how ' ']);
fprintf('nf = %3.0f, f = %9.4e (%2.1f%%)\n', nf, fmax, ...
100*(fmax-fmax_old)/(abs(fmax_old)+eps))
end
fmax_old = fmax;
%%% Three stopping tests from MDSMAX.M
% Stopping Test 1 - f reached target value?
if fmax >= stopit(3)
msg = ['Exceeded target...quitting\n'];
break % Quit.
end
% Stopping Test 2 - too many f-evals?
if nf >= stopit(2)
msg = ['Max no. of function evaluations exceeded...quitting\n'];
break % Quit.
end
% Stopping Test 3 - converged? This is test (4.3) in [1].
v1 = V(:,1);
size_simplex = norm(V(:,2:n+1)-v1(:,ones(1,n)),1) / max(1, norm(v1,1));
if size_simplex <= tol
msg = sprintf('Simplex size %9.4e <= %9.4e...quitting\n', ...
size_simplex, tol);
break % Quit.
end
% One step of the Nelder-Mead simplex algorithm
% NJH: Altered function calls and changed CNT to NF.
% Changed each `fr < f(1)' type test to `>' for maximization
% and re-ordered function values after sort.
vbar = (sum(V(:,1:n)')/n)'; % Mean value
vr = (1 + alpha)*vbar - alpha*V(:,n+1);
x(:) = vr;
fr = dirn*feval(fun,x,varargin{:});
nf = nf + 1;
vk = vr; fk = fr; how = 'reflect, ';
if fr > f(n)
if fr > f(1)
ve = gamma*vr + (1-gamma)*vbar;
x(:) = ve;
fe = dirn*feval(fun,x,varargin{:});
nf = nf + 1;
if fe > f(1)
vk = ve; fk = fe;
how = 'expand, ';
end
end
else
vt = V(:,n+1); ft = f(n+1);
if fr > ft
vt = vr; ft = fr;
end
vc = beta*vt + (1-beta)*vbar;
x(:) = vc;
fc = dirn*feval(fun,x,varargin{:});
nf = nf + 1;
if fc > f(n)
vk = vc; fk = fc;
how = 'contract,';
else
for j = 2:n
V(:,j) = (V(:,1) + V(:,j))/2;
x(:) = V(:,j);
f(j) = dirn*feval(fun,x,varargin{:});
end
nf = nf + n-1;
vk = (V(:,1) + V(:,n+1))/2;
x(:) = vk;
fk = dirn*feval(fun,x,varargin{:});
nf = nf + 1;
how = 'shrink, ';
end
end
V(:,n+1) = vk;
f(n+1) = fk;
[temp,j] = sort(f);
j = j(n+1:-1:1);
f = f(j); V = V(:,j);
end %%%%%% End of outer (and only) loop.
% Finished.
if trace, fprintf(msg), end
x(:) = V(:,1);
|