/usr/share/octave/packages/optim-1.5.2/quadprog.m is in octave-optim 1.5.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 | ## Copyright (C) 2015 Asma Afzal
## Copyright (C) 2013-2015 Julien Bect
## Copyright (C) 2000-2015 Gabriele Pannocchia
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} quadprog (@var{H}, @var{f})
## @deftypefnx {Function File} {} quadprog (@var{H}, @var{f}, @var{A}, @var{b})
## @deftypefnx {Function File} {} quadprog (@var{H}, @var{f}, @var{A}, @var{b}, @var{Aeq}, @var{beq})
## @deftypefnx {Function File} {} quadprog (@var{H}, @var{f}, @var{A}, @var{b}, @var{Aeq}, @var{beq}, @var{lb}, @var{ub})
## @deftypefnx {Function File} {} quadprog (@var{H}, @var{f}, @var{A}, @var{b}, @var{Aeq}, @var{beq}, @var{lb}, @var{ub}, @var{x0})
## @deftypefnx {Function File} {} quadprog (@var{H}, @var{f}, @var{A}, @var{b}, @var{Aeq}, @var{beq}, @var{lb}, @var{ub}, @var{x0}, @var{options})
## @deftypefnx {Function File} {[@var{x}, @var{fval}, @var{exitflag}, @var{output}, @var{lambda}] =} quadprog (@dots{})
## Solve the quadratic program
## @example
## @group
## min 0.5 x'*H*x + x'*f
## x
## @end group
## @end example
## subject to
## @example
## @group
## @var{A}*@var{x} <= @var{b},
## @var{Aeq}*@var{x} = @var{beq},
## @var{lb} <= @var{x} <= @var{ub}.
## @end group
## @end example
##
## The initial guess @var{x0} and the constraint arguments (@var{A} and
## @var{b}, @var{Aeq} and @var{beq}, @var{lb} and @var{ub}) can be set to
## the empty matrix (@code{[]}) if not given. If the initial guess
## @var{x0} is feasible the algorithm is faster.
##
## @var{options} can be set with @code{optimset}, currently the only
## option is @code{MaxIter}, the maximum number of iterations (default:
## 200).
##
## Returned values:
##
## @table @var
## @item x
## Position of minimum.
##
## @item fval
## Value at the minimum.
##
## @item exitflag
## Status of solution:
##
## @table @code
## @item 0
## Maximum number of iterations reached.
##
## @item -2
## The problem is infeasible.
##
## @item -3
## The problem is not convex and unbounded
##
## @item 1
## Global solution found.
##
## @item 4
## Local solution found.
## @end table
##
## @item output
## Structure with additional information, currently the only field is
## @code{iterations}, the number of used iterations.
##
## @item lambda
## Structure containing Lagrange multipliers corresponding to the
## constraints. For equality constraints, the sign of the multipliers
## is chosen to satisfy the equation
## @example
## 0.5 H * x + f + A' * lambda_inequ + Aeq' * lambda_equ = 0 .
## @end example
## If lower and upper bounds are equal, or so close to each other that
## they are considered equal by the algorithm, only one of these
## bounds is considered active when computing the solution, and a
## positive lambda will be placed only at this bound.
##
## @end table
##
## This function calls Octave's @code{__qp__} back-end algorithm internally.
## @end deftypefn
## PKG_ADD: [~] = __all_opts__ ("quadprog");
## adapted from Octaves qp.m with enhanced handling of lambda by Asma
## Afzal <asmaafzal5@gmail.com>
##
## modified by Olaf Till <i7tiol@t-online.de>
function varargout = quadprog (H, f, varargin)
if (nargin == 1 && ischar (H) && strcmp (H, "defaults"))
varargout{1} = optimset ("MaxIter", 200);
return;
endif
maxnargs = 10;
nargs = nargin ();
nout = nargout ();
## disallow, among others, incomplete pairs (matrix and vector) of
## constraint arguments, but allow giving only lower bounds, since
## specifying an empty matrix for upper bounds is allowed anyway
if (nargs < 2 || nargs == 3 || nargs == 5 || nargs > maxnargs)
print_usage();
endif
fname = "quadprog";
allargin = horzcat (varargin, cell (1, maxnargs - nargs));
[Ain, bin, Aeq, beq, lb, ub, x0, options] = allargin{:};
if (isempty (options))
options = struct ();
elseif (! isstruct (options))
error ("%s: options must be empty or a structure", fname);
endif
maxit = optimget (options, "MaxIter", 200);
## Checking the quadratic penalty
if (! issquare (H))
error ("%s: quadratic penalty matrix not square", fname);
elseif (! ishermitian (H))
## warning ("quadratic penalty matrix not hermitian");
H = (H + H')/2;
endif
n = rows (H);
## Checking linear penalty (if empty it is resized to the right
## dimension and filled with 0).
f = check_vector (f, n, fname, "linear penalty");
## Checking the initial guess (if empty it is resized to the right
## dimension and filled with 0).
x0 = check_vector (x0, n, fname, "initial guess");
lambda = struct ("lower", [], "upper", [], "eqlin", [], "ineqlin", []);
## Equality constraint matrices
if (isempty (Aeq) && isempty (beq))
Aeq = zeros (0, n);
beq = zeros (0, 1);
n_eq = 0;
else
[n_eq, n1] = size (Aeq);
if (n1 != n)
error ("%s: equality constraint matrix has incorrect column dimension",
fname);
endif
if (! isvector (beq) || numel (beq) != n_eq)
error ("%s: equality constraint matrix and vector have inconsistent dimensions",
fname);
endif
beq = beq(:);
endif
## Inequality constraint matrices
if (isempty (Ain) && isempty (bin))
Ain = zeros (0, n);
bin = zeros (0, 1);
else
[n_in, n1] = size (Ain);
if (n1 != n)
error ("%s: inequality constraint matrix has incorrect column dimension",
fname);
endif
if (! isvector (bin) || numel (bin) != n_in)
error ("%s: inequality constraint matrix and vector have inconsistent dimensions",
fname);
endif
## change from quadprog- to __qp__-conventions
Ain = -Ain;
bin = -bin;
##
idx_ineq = isinf (bin) & bin < 0;
## Discard inequality constraints that have -Inf bounds since those
## will never be active but keep the index for ordering of lambda.
bin(idx_ineq) = [];
Ain(idx_ineq, :) = [];
endif
## Bound constraints
##
## Discard lower bounds of -inf and upper bounds of +inf since those
## will never be active.
if (! isempty (lb))
if (! isvector (lb) || numel (lb) != n)
error ("%s: lower bounds have incorrect dimensions", fname);
elseif (isempty (ub))
idx_lb = ! (isinf (lb) & lb < 0);
Ain = [Ain; eye(n)(idx_lb,:)];
bin = [bin; lb(idx_lb,1)];
endif
endif
if (! isempty (ub))
if (! isvector (ub) || numel (ub) != n)
error ("%s: upper bounds have incorrect dimensions", fname);
elseif (isempty (lb))
idx_ub = ! (isinf (ub) & ub > 0);
Ain = [Ain; -eye(n)(idx_ub,:)];
bin = [bin; -ub(idx_ub,1)];
endif
endif
count_not_ineq = 0;
idx_bounds_ineq = true (n, 1);
if (! isempty (lb) && ! isempty (ub))
rtol = sqrt (eps);
## index upper and lower bounds far enough apart from each other
## -- the others will be treated as equality constraints
idx_bounds_ineq = abs (ub - lb) >= rtol * (1 + abs (lb));
idx_bounds_eq = ! idx_bounds_ineq;
idx_lb = ! (isinf (lb) & lb < 0);
idx_ub = ! (isinf (ub) & ub > 0);
if (any (ub < lb & idx_bounds_ineq))
error ("%s: some upper bounds lower than lower bounds", fname);
endif
## possibly add to equality constraints
Aeq = vertcat (Aeq, eye (n)(idx_bounds_eq, :));
beq = vertcat (beq, .5 * (lb(idx_bounds_eq, 1) ...
+ ub(idx_bounds_eq, 1)));
## possibly add to inequality constraints
Ain = vertcat (Ain,
eye (n)(idx_bounds_ineq & idx_lb, :),
- eye (n)(idx_bounds_ineq & idx_ub, :));
bin = vertcat (bin,
lb(idx_bounds_ineq & idx_lb, 1),
- ub(idx_bounds_ineq & idx_ub, 1));
count_not_ineq = sum (idx_bounds_eq);
endif
n_eq = numel (beq);
n_in = numel (bin);
## Now we should have the following QP:
##
## min_x 0.5*x'*H*x + x'*f
## s.t. Aeq*x = beq
## A*x >= b
## Check if the initial guess is feasible.
if (isa (x0, "single") || isa (H, "single") || isa (f, "single")
|| isa (Aeq, "single") || isa (beq, "single"))
rtol = sqrt (eps ("single"));
else
rtol = sqrt (eps);
endif
eq_infeasible = (n_eq > 0 && norm (Aeq * x0 - beq) > rtol * (1 + abs (beq)));
in_infeasible = (n_in > 0 && any (Ain * x0 - bin < -rtol * (1 + abs (bin))));
exitflag = 0;
if (eq_infeasible || in_infeasible)
## The initial guess is not feasible.
## First define xbar that is feasible with respect to the equality
## constraints.
if (eq_infeasible)
if (rank (Aeq) < n_eq)
error ("%s: equality constraint matrix must be full row rank",
fname);
endif
xbar = pinv (Aeq) * beq;
else
xbar = x0;
endif
## Check if xbar is feasible with respect to the inequality
## constraints also.
if (n_in > 0)
res = Ain * xbar - bin;
if (any (res < -rtol * (1 + abs (bin))))
## xbar is not feasible with respect to the inequality
## constraints. Compute a step in the null space of the
## equality constraints, by solving a QP. If the slack is
## small, we have a feasible initial guess. Otherwise, the
## problem is infeasible.
if (n_eq > 0)
Z = null (Aeq);
if (isempty (Z))
## The problem is infeasible because Aeq is square and full
## rank, but xbar is not feasible.
exitflag = 6;
endif
endif
if (exitflag != 6)
## Solve an LP with additional slack variables to find
## a feasible starting point.
gamma = eye (n_in);
if (n_eq > 0)
Atmp = [Ain*Z, gamma];
btmp = -res;
else
Atmp = [Ain, gamma];
btmp = bin;
endif
ctmp = [zeros(n-n_eq, 1); ones(n_in, 1)];
lb = [-Inf(n-n_eq,1); zeros(n_in,1)];
ub = [];
ctype = repmat ("L", n_in, 1);
[P, dummy, status] = glpk (ctmp, Atmp, btmp, lb, ub, ctype);
if ((status == 0)
&& all (abs (P(n-n_eq+1:end)) < rtol * (1 + norm (btmp))))
## We found a feasible starting point
if (n_eq > 0)
x0 = xbar + Z * P(1:n-n_eq);
else
x0 = P(1:n);
endif
else
## The problem is infeasible
exitflag = 6;
endif
endif
else
## xbar is feasible. We use it a starting point.
x0 = xbar;
endif
else
## xbar is feasible. We use it a starting point.
x0 = xbar;
endif
endif
if (exitflag == 0)
## The initial (or computed) guess is feasible.
## We call the solver.
[x, qp_lambda, exitflag, iter] = ...
__qp__ (x0, H, f, Aeq, beq, Ain, bin, maxit);
else
iter = 0;
x = x0;
endif
varargout = cell (1, nout);
varargout{1} = x;
if (nout >= 2)
varargout{2} = 0.5 * x' * H * x + f' * x;;
endif
if (nout >= 3)
switch (exitflag)
case 0
varargout{3} = 1;
case 1
varargout{3} = 4;
case 2
varargout{3} = -3;
case 3
varargout{3} = 0;
case 6
varargout{3} = -2;
endswitch
endif
if (nout >= 4)
varargout{4}.iterations = iter;
endif
if (nout >= 5 && exitflag == 0)
lm_idx = 1; lambda_not_ineq = [];
## Pick multipliers corresponding to equality constraints first if
## present
if (n_eq > 0)
## Matlab specifies in its online help pages the condition
## 'gradient f + lambda * gradient equality_constraints = 0',
## which determines this sign of lambda for equality
## constraints. The difference to __sqp__ probably results from
## the different 'direction' of _in_equality constraints (<=
## versus >=), which are usually handled together with equality
## constraints in the algorithm.
lambda.eqlin = -qp_lambda(lm_idx:lm_idx + n_eq - count_not_ineq
- 1);
## Multipliers corresponding to too close bounds making equality
## constraints
lambda_not_ineq = -qp_lambda(lm_idx + n_eq - count_not_ineq:
lm_idx + n_eq -1);
lm_idx += n_eq;
endif
## Pick multipliers corresponding to inequality constraints if
## present
if (! isempty (allargin{1}))
ineq_tmp = qp_lambda(lm_idx:lm_idx + sum (! idx_ineq) - 1);
lambda.ineqlin = ineq_tmp;
lm_idx = lm_idx + sum (! idx_ineq);
endif
## Multipliers corresponding to bounds. Multipliers of two close
## bounds, having been treated as equality constraints, have to be
## inserted here (for one of these bounds only, otherwise we'd
## have an additional term with respect to the implicitely used
## Lagrangian at the result). The derivative of the equality
## constraint, given the way this constraint is (implicitely)
## formulated in this algorithm, is the same as the derivative of
## the corresponding upper bound, so lambda is assigned to the
## upper bound if it's positive. If it's negative, this can't be
## done (bounds correspond to inequality constraints), so it is
## negated and assigned to the lower bound instead.
pos_idx = ! (neg_idx = lambda_not_ineq < 0);
idx_pos_lambda = idx_neg_lambda = false (n, 1);
idx_pos_lambda(idx_bounds_eq) = pos_idx;
idx_neg_lambda(idx_bounds_eq) = neg_idx;
## Pick multipliers corresponding to lower bounds if present
if (! isempty (allargin{5}))
lambda.lower = zeros (n, 1);
lb_tmp = qp_lambda(lm_idx:lm_idx + sum (idx_lb) - count_not_ineq
- 1);
## Take care of the position of too close and -Inf bounds
idx = idx_bounds_ineq & idx_lb;
lambda.lower(idx) = lb_tmp;
lambda.lower(idx_neg_lambda) = -lambda_not_ineq(neg_idx);
lambda.lower = lambda.lower(:);
lm_idx += sum (idx_lb) - count_not_ineq;
endif
## Pick multipliers corresponding to upper bounds if present
if (! isempty (allargin{6}))
lambda.upper = zeros (n, 1);
ub_tmp = qp_lambda(lm_idx:lm_idx + sum (idx_ub) - count_not_ineq
- 1);
## Take care of the position of -Inf bounds
idx = idx_bounds_ineq & idx_ub;
lambda.upper(idx) = ub_tmp;
lambda.upper(idx_pos_lambda) = lambda_not_ineq(pos_idx);
lambda.upper = lambda.upper(:);
endif
varargout{5} = lambda;
endif
endfunction
function vec = check_vector (vec, n, fname, vecname)
if (isempty (vec))
vec = zeros (n, 1);
else
if (! isvector (vec))
error ("%s: %s must be a vector", fname, vecname);
endif
if (numel (vec) != n)
error ("%s: %s has incorrect length", fname, vecname);
endif
vec = vec(:);
endif
endfunction
%!test
%! H= diag([1; 0]);
%! f = [3; 4];
%! A= [-1 -3; 2 5; 3 4];
%! b = [-15; 100; 80];
%! l= zeros(2,1);
%! [x,fval,exitflag,output] = quadprog(H,f,A,b,[],[],l,[]);
%! assert(x,[0;5])
%! assert(fval,20)
%! assert(exitflag,1)
%! assert(output.iterations,1)
%!demo
%! C = [0.9501 0.7620 0.6153 0.4057
%! 0.2311 0.4564 0.7919 0.9354
%! 0.6068 0.0185 0.9218 0.9169
%! 0.4859 0.8214 0.7382 0.4102
%! 0.8912 0.4447 0.1762 0.8936];
%! %% Linear Inequality Constraints
%! d = [0.0578; 0.3528; 0.8131; 0.0098; 0.1388];
%! A =[0.2027 0.2721 0.7467 0.4659
%! 0.1987 0.1988 0.4450 0.4186
%! 0.6037 0.0152 0.9318 0.8462];
%! b =[0.5251; 0.2026; 0.6721];
%! %% Linear Equality Constraints
%! Aeq = [3 5 7 9];
%! beq = 4;
%! %% Bound constraints
%! lb = -0.1*ones(4,1);
%! ub = ones(4,1);
%! H = C' * C;
%! f = -C' * d;
%! [x, obj, flag, output, lambda]=quadprog (H, f, A, b, Aeq, beq, lb, ub)
|