/usr/lib/pd/extra/windowing/hanning~-help.pd is in pd-windowing 0.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | #N canvas 283 199 561 515 10;
#X obj 4 474 cnv 15 550 20 empty \$0-pddp.cnv.footer empty 20 12 0
14 -228856 -66577 0;
#X obj 4 -17 cnv 15 550 40 empty \$0-pddp.cnv.header hanning~ 3 12
0 18 -204280 -1 0;
#X obj 3 239 cnv 3 550 3 empty \$0-pddp.cnv.inlets inlets 15 12 0 13
-228856 -1 0;
#X obj 3 299 cnv 3 550 3 empty \$0-pddp.cnv.outlets outlet 15 12 0
13 -228856 -1 0;
#X obj 3 359 cnv 3 550 3 empty \$0-pddp.cnv.more_info more_info 15
12 0 13 -228856 -1 0;
#X obj 72 259 cnv 17 3 30 empty \$0-pddp.cnv.let.0 0 5 9 0 16 -228856
-162280 0;
#X obj 170 141 hanning~;
#N canvas 0 0 450 300 graph1 0;
#X array \$0-hanning 64 float 0;
#X coords 0 1 63 -1 200 140 1;
#X restore 302 54 graph;
#X text 168 53 0.5*(1+cos(pi*x));
#X obj 170 121 sig~ 1;
#X text 168 40 formula:;
#X floatatom 170 104 5 0 0 0 - - -;
#X obj 97 86 hsl 71 15 -1 1 0 0 empty empty empty -2 -6 0 10 -262144
-1 -1 7000 1;
#X msg 94 66 1;
#X obj 94 46 loadbang;
#X obj 435 6 pddp/pddplink http://wiki.puredata.info/en/hanning~ -text
pdpedia: hanning~;
#X obj 102 376 pddp/pddplink http://en.wikipedia.org/wiki/Hanning -text
wikipedia: hanning function;
#X obj 102 389 pddp/pddplink http://mathworld.wolfram.com/HanningFunction.html
-text mathworld link;
#X obj 102 363 pddp/pddplink http://en.wikipedia.org/wiki/Window_function
-text wikipedia: window functions;
#X obj 438 -14 import windowing;
#X text 103 317 SIGNAL: a hanning (inverted cosine) window with size=dsp
blocksize;
#X msg 36 154 \; pd dsp 1;
#X text 21 85 height --->;
#X text 15 6 description: generates a hanning window for each dsp block
;
#X text 102 402 Windowing functions are used with FFTs. These transform
the signal block-by-block into a spectral representation whose resolution
in both the frequency and time domains are proportional to their size
(as a power-of-two in PD). The different windows have different characteristics
in terms of stopband attenuation and noise bandwidth.;
#X obj 170 167 tabsend~ \$0-hanning;
#X text 102 258 SIGNAL: the height (amplitude) of the window is controled
by the signal on its inlet.;
#X obj 72 319 cnv 17 3 30 empty \$0-pddp.cnv.let.0 0 5 9 0 16 -228856
-162280 0;
#X connect 6 0 25 0;
#X connect 9 0 6 0;
#X connect 11 0 9 0;
#X connect 12 0 11 0;
#X connect 13 0 12 0;
#X connect 14 0 13 0;
|