This file is indexed.

/usr/share/pdb2pqr/pdb2pka/graph_cut/protein_complex.py is in pdb2pqr 2.1.1+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
from itertools import combinations, product, permutations
from collections import OrderedDict
import sys
import math

titratable_residue_data = {
                           "ARG": {"model_pka" : 13.0, "ionizable" : 1, "tautomers":{"deprotonated":("1+2+3+4",), "protonated":("1+2+3+4+5",)}},
                           "ASP": {"model_pka": 3.9, "ionizable":-1, "tautomers":{"protonated":("1", "2", "3", "4"), "deprotonated":("0",)}},
                           "GLU": {"model_pka": 4.1, "ionizable":-1, "tautomers":{"protonated":("1", "2", "3", "4"), "deprotonated":("0",)}},
                           "LYS": {"model_pka":10.4, "ionizable": 1, "tautomers":{"protonated":("1",), "deprotonated":("0",)}},
                           "TYR": {"model_pka": 9.6, "ionizable": 1, "tautomers":{"protonated":("1",), "deprotonated":("0",)}},
                           "CTR": {"model_pka": 3.2, "ionizable":-1, "tautomers":{"protonated":("1", "2", "3", "4"), "deprotonated":("0",)}},
                           "NTR": {"model_pka": 8.3, "ionizable": 1, "tautomers":{"deprotonated":("1", "2"), "protonated":("1+2",)}},
                           "HIS": {"model_pka": 6.6, "ionizable": 1, "tautomers":{"protonated":("1", "2"), "deprotonated":("1+2",)}},
                          }
all_tautomers = set()
for residue_data in titratable_residue_data.values():
    all_tautomers.update(residue_data["tautomers"]["deprotonated"])
    all_tautomers.update(residue_data["tautomers"]["protonated"])
state_to_tautomer = {}
for state in ("ASH1c", "GLH1c", "LYS", "TYR", "HSD", "H3", "CTR01c"):
    state_to_tautomer[state] = "1"
for state in ("ASH1t", "GLH1t", "HSE", "H2", "CTR01t"):
    state_to_tautomer[state] = "2"
for state in ("ASH2c", "GLH2c", "CTR02c"):
    state_to_tautomer[state] = "3"
for state in ("ASH2t", "GLH2t", "CTR02t"):
    state_to_tautomer[state] = "4"
for state in ("ASP", "GLU", "LYS0", "TYR-", "CTR-"):
    state_to_tautomer[state] = "0"
state_to_tautomer["ARG0"] = "1+2+3+4"
state_to_tautomer["ARG"] = "1+2+3+4+5"
for state in ("HSP", "H3+H2"):
    state_to_tautomer[state] = "1+2"

class ResidueInstance(object):
    """Storage class for information about a particular residue state."""
    def __init__(self, protonated, name, energy = 0.0):
        self.name = name
        self.protonated = protonated
        self.energy = energy
        self.energyNF = None
        self.energy_with_ph = None
    def __hash__(self):
        return hash(self.name)
    def __repr__(self):
        return self.name
        #return "{}: {}, {}, {}".format(self.name, self.protonated, self.energy, self.energyNF)
    #For sorting state output if we use pretty print.
    def __eq__(self, other):
        return self._get_self_comp_tuple() == other._get_self_comp_tuple()
    def __ne__(self, other):
        return self._get_self_comp_tuple() != other._get_self_comp_tuple()
    def __gt__(self, other):
        return self._get_self_comp_tuple() > other._get_self_comp_tuple()
    def __lt__(self, other):
        return self._get_self_comp_tuple() < other._get_self_comp_tuple()
    def __ge__(self, other):
        return self._get_self_comp_tuple() >= other._get_self_comp_tuple()
    def __le__(self, other):
        return self._get_self_comp_tuple() <= other._get_self_comp_tuple()
    def _get_self_comp_tuple(self):
        return (self.name, self.energy)

class ResidueVariable(object):
    """Storage class all information about a particular residue
       including all possible states."""
    def __init__(self, name):
        self.name = name
        self.instances = OrderedDict()
    def get_instance(self, state):
        """Returns a specific ResidueInstance from the state name.
           After the protein complex is simplified this will always return None
           as the non-consolidated Instances are removed."""
        if state not in all_tautomers:
            state = state_to_tautomer.get(state)
        return self.instances.get(state)
    def get_prot_and_deprot_instances(self):
        #We don't want the placeholder instances
        prot = [value for key, value in self.instances.items() if "PROTONATED" not in key and value.protonated]
        deprot = [value for key, value in self.instances.items() if "PROTONATED" not in key and not value.protonated]
        return prot, deprot
    def __hash__(self):
        return hash(self.name)
    def __repr__(self):
        return self.name
    #For sorting state output if we use pretty print.
    def __eq__(self, other):
        return self.name == other.name
    def __ne__(self, other):
        return self.name != other.name
    def __gt__(self, other):
        return self.name > other.name
    def __lt__(self, other):
        return self.name < other.name
    def __ge__(self, other):
        return self.name >= other.name
    def __le__(self, other):
        return self.name <= other.name

class ProteinComplex(object):
    def __init__(self, T=300):
        self.T = T
        self.normalized_constant_energy = 0.0
        self.residue_variables = OrderedDict()
        self.interaction_energies = OrderedDict()
        self.normalized_interaction_energies = None

    def add_residue(self, residue_type, chain, location):
        """Adds a residue to the protein if needed.
           Automatically creates all instances needed before simplification."""
        residue_tuple = (residue_type, chain, location)
        if residue_tuple not in self.residue_variables:
            residue_data = titratable_residue_data.get(residue_type)
            base_name = '_'.join(residue_tuple)+'_'
            res_var = ResidueVariable('_'.join(residue_tuple))

            tautomers = residue_data["tautomers"]
            model_pka = residue_data["model_pka"]

            for tautomer in tautomers["deprotonated"]:
                instance = ResidueInstance(False, base_name+tautomer)
                instance.energy = 0
                res_var.instances[tautomer] = instance

            for tautomer in tautomers["protonated"]:
                instance = ResidueInstance(True, base_name+tautomer)
                instance.energy = -1.0*math.log(10)*model_pka
                res_var.instances[tautomer] = instance

            if residue_type != "HIS":
                #Placeholder instances for later consolidation
                #HIS is split later so we don't add these as they are not needed.

                instance = ResidueInstance(True, base_name+"PROTONATED")
                res_var.instances["PROTONATED"] = instance

                instance = ResidueInstance(False, base_name+"DEPROTONATED")
                res_var.instances["DEPROTONATED"] = instance

            self.residue_variables[residue_tuple] = res_var


    def get_residue(self, name, chain, location):
        "Returns the residue for this specific name, chain, and location."
        return self.residue_variables.get((name, chain, location))

    def get_instance(self, residue_type, chain, location, state):
        "Returns the instance for this specific name, chain, and location and state name."
        res_var = self.residue_variables.get((residue_type, chain, location))
        if res_var is None:
            return None
        return res_var.get_instance(state)

    def drop_interaction_pairs(self, pair_list):
        "Drop each pair of interaction energies in the pair_list"
        for instance1_name, instance2_name in pair_list:
            del self.interaction_energies[instance1_name, instance2_name]
            del self.interaction_energies[instance2_name, instance1_name]

    def get_interaction_combinations(self, pair1, pair2):
        "Get a list of all pairwise combinations from lists pair1 and pair2."
        product_list = [(x,y) for x,y in product(pair1, pair2)]
        return product_list

    def add_interaction_energy_pair(self, instance1, instance2, energy, normalized=False):
        "Insert interaction energy pair."
        ie = self.normalized_interaction_energies if normalized else self.interaction_energies
        ie[instance1, instance2] = energy
        ie[instance2, instance1] = energy

    def simplify(self):
        """Simplify the instances into protonated and deprotonated.
           Also divides HIS into HID and HIE."""
        self.update_special_instance_energies()
        self.consolidate()
        self.divide_his()

    def update_special_instance_energies(self):
        """After we have loaded the backgroind and desolvation files we need to
        update the consolidated instances to use the minimum energy of the
        instances they are meant to replace."""
        for key, residue in self.residue_variables.items():
            name = key[0]
            if name == 'HIS':
                continue
            prot_consolidated = residue.instances["PROTONATED"]
            deprot_consolidated = residue.instances["DEPROTONATED"]
            protonated, deprotonated = residue.get_prot_and_deprot_instances()
            #Update consolidated instance energy
            prot_consolidated.energy = min(x.energy for x in protonated)
            deprot_consolidated.energy = min(x.energy for x in deprotonated)

    def consolidate(self):
        """Each residue has multiple protonated and deprotonated states. Here
           we consolidate those into two states for each residue, PROT and DEPROT.
           We take minimums of energies between states in each class. For example,
           assume we have two amino acids, A and B, where A has protonated states 1, 2, 3
           and deprotonated state 4, and B has protonated states 1, 2, and deprotonated
           state 3. Then
           E(A_PROT, B_PROT) = min{E(A1,B1), E(A1,B2), E(A2,B1), E(A2,B2), E(A3,B1), E(A3,B2)},
           E(A_PROT, B_DEPROT) = min{E(A1,B3), E(A2,B3), E(A3,B3)},
           E(A_DEPROT, B_PROT) = min{E(A4,B1), E(A4,B2)}, and
           E(A_DEPROT, B_DEPROT) = E(A4,B3).
           We do not deal with HIS here, it is kept in its 3 states for now.

           After this is finished all unused interaction energies will be removed from
           self.interaction_energies."""

        handled_interaction_pairs = set()

        #See https://docs.python.org/2/library/itertools.html#itertools.combinations
        for v, w in combinations(iter(self.residue_variables.items()),2):
            v_key, v_residue = v
            w_key, w_residue = w
            v_name = v_key[0]
            w_name = w_key[0]

            #Skip HIS for now
            if v_name == 'HIS' or w_name == 'HIS':
                continue

            v_protinated, v_unprotonated = v_residue.get_prot_and_deprot_instances()
            v_prot_consolidated = v_residue.instances["PROTONATED"]
            v_deprot_consolidated = v_residue.instances["DEPROTONATED"]

            w_protinated, w_unprotonated = w_residue.get_prot_and_deprot_instances()
            w_prot_consolidated = w_residue.instances["PROTONATED"]
            w_deprot_consolidated = w_residue.instances["DEPROTONATED"]

            #For every pairing of v and w (protonated and unprotonated) find the
            # minimum interaction energy and update the interaction map accordingly.
            v_stuff = ((v_protinated, v_prot_consolidated), (v_unprotonated, v_deprot_consolidated))
            w_stuff = ((w_protinated, w_prot_consolidated), (w_unprotonated, w_deprot_consolidated))

            for v_product, w_product in product(v_stuff, w_stuff):
                v_instances, v_consolidated = v_product
                w_instances, w_consolidated = w_product

                energies = []
                #Find all of the pairs
                for v_instance, w_instance in product(v_instances, w_instances):
                    energy = self.interaction_energies[v_instance, w_instance]
                    energies.append(energy)
                    #Mark for deletion.
                    handled_interaction_pairs.add((v_instance, w_instance))

                min_energy = min(energies)

                self.add_interaction_energy_pair(v_consolidated, w_consolidated, min_energy)

        #Now handle HIS.
        #See https://docs.python.org/2/library/itertools.html#itertools.permutations
        for v, w in permutations(iter(self.residue_variables.items()),2):
            his_key, his_residue = v
            other_key, other_residue = w
            his_name = his_key[0]
            other_name = other_key[0]

            #We only care about his this pass
            if his_name != 'HIS':
                continue
            #HIS - HIS is already correct for what this pass does.
            if  other_name == 'HIS':
                continue

            other_protinated, other_unprotonated = other_residue.get_prot_and_deprot_instances()
            other_prot_consolidated = other_residue.instances["PROTONATED"]
            other_deprot_consolidated = other_residue.instances["DEPROTONATED"]

            his_protinated, his_unprotonated = his_residue.get_prot_and_deprot_instances()
            his_stuff = his_protinated + his_unprotonated
            other_stuff = ((other_protinated, other_prot_consolidated), (other_unprotonated, other_deprot_consolidated))

            #For every pairing of a HIS instance and another non HIS residue find the
            # minimum interaction energy and update the interaction map accordingly.
            #See https://docs.python.org/2/library/itertools.html#itertools.product
            for his_instance, other_product in product(his_stuff, other_stuff):
                other_instances, other_consolidated = other_product

                energies = []

                for other_instance in other_instances:
                    energy = self.interaction_energies[his_instance, other_instance]
                    energies.append(energy)
                    handled_interaction_pairs.add((his_instance, other_instance))

                min_energy = min(energies)

                self.add_interaction_energy_pair(his_instance, other_consolidated, min_energy)

        #Clean out unused interaction energies
        self.drop_interaction_pairs(handled_interaction_pairs)

        for key, residue in self.residue_variables.items():
            name = key[0]
            if name == 'HIS':
                continue

            residue.instances = OrderedDict((k,v) for k,v in residue.instances.items() if "PROTONATED" in k)


    def divide_his(self):
        """Here we divide HIS into two residues - HID, HIE - each with half the pKa value. We
           have to set interaction energies between HIS and other residues and for HIS-HIS
           interactions. Do this based on the values given in the paper"""

        to_drop_his = set()
        new_to_old_his = {}
        handled_interaction_pairs = set()

        items = list(self.residue_variables.items())

        #Find all HIS and split them.
        for key, residue in items:
            name = key[0]
            if name != 'HIS':
                continue

            old_instance_1 = residue.get_instance('1')
            old_instance_2 = residue.get_instance('2')
            old_instance_12 = residue.get_instance('1+2')

            base_name = '_'+'_'.join(key[-2:])+'_'
            to_drop_his.add(key)

            hid = ResidueVariable("HId"+base_name)
            name = "HId"+base_name+"PROTONATED"
            hid_prot = ResidueInstance(True, name, energy=old_instance_1.energy)
            name = "HId"+base_name+"DEPROTONATED"
            hid_deprot = ResidueInstance(False, name)

            hid.instances["PROTONATED"] = hid_prot
            hid.instances["DEPROTONATED"] = hid_deprot


            res_tuple = ("HId",)+key[-2:]
            self.residue_variables[res_tuple] = hid

            new_to_old_his[hid] = residue

            hie = ResidueVariable("HIe"+base_name)
            name = "HIe"+base_name+"PROTONATED"
            hie_prot = ResidueInstance( True, name, energy=old_instance_2.energy)
            name = "HIe"+base_name+"DEPROTONATED"
            hie_deprot = ResidueInstance(False, name)

            hie.instances["PROTONATED"] = hie_prot
            hie.instances["DEPROTONATED"] = hie_deprot

            res_tuple = ("HIe",)+key[-2:]
            self.residue_variables[res_tuple] = hie

            #Keep a mapping to the original residue object so we can look up
            # interaction energies in the HIS/HIS interactions loop below.
            new_to_old_his[hie] = residue

            #Create interaction energies between newly created residues.
            energy = old_instance_12.energy - old_instance_1.energy - old_instance_2.energy
            self.add_interaction_energy_pair(hid_prot, hie_prot, energy)
            self.add_interaction_energy_pair(hid_prot, hie_deprot, 0.0)
            self.add_interaction_energy_pair(hid_deprot, hie_prot, 0.0)
            self.add_interaction_energy_pair(hid_deprot, hie_deprot, sys.float_info.max)

        #Delete residue variables from main map.
        for key in to_drop_his:
            del self.residue_variables[key]

        #This loop is order dependent for HIS/HIS interactions. That is why some of the code paths that
        #appear as though they should be duplicate or symmetrical are not
        #and why we compare chain locations.
        # (In case you were wondering why HIe <-> HId is not the same as
        #  HId <-> HIe.)

        #See https://docs.python.org/2/library/itertools.html#itertools.product
        for v, w in product(iter(self.residue_variables.items()), repeat=2):
            his_key, his_residue = v
            other_key, other_residue = w
            his_name, his_chain, his_location = his_key
            other_name, other_chain, other_location = other_key

            if his_name not in ('HId', 'HIe'):
                continue

            his_location = int(his_location)
            other_location = int(other_location)

            his_prot = his_residue.instances["PROTONATED"]
            his_deprot = his_residue.instances["DEPROTONATED"]

            old_his = new_to_old_his[his_residue]
            old_his_instance_1 = old_his.get_instance('1')
            old_his_instance_2 = old_his.get_instance('2')
            old_his_instance_12 = old_his.get_instance('1+2')

            other_prot = other_residue.instances["PROTONATED"]
            other_deprot = other_residue.instances["DEPROTONATED"]


            #Handle create interaction with HId
            if other_name == 'HId':
                # HIS/HIS is order dependent.
                if his_chain > other_chain or his_location >= other_location:
                    continue

                old_other = new_to_old_his[other_residue]
                old_other_instance_1 = old_other.get_instance('1')
                old_other_instance_2 = old_other.get_instance('2')
                old_other_instance_12 = old_other.get_instance('1+2')

                if his_name == 'HIe':
                    energy = self.interaction_energies[old_his_instance_12, old_other_instance_12]

                    self.add_interaction_energy_pair(his_prot, other_prot, energy)

                    self.add_interaction_energy_pair(his_prot, other_deprot, 0.0)

                    self.add_interaction_energy_pair(his_deprot, other_prot, 0.0)

                    energy = (self.interaction_energies[old_his_instance_1, old_other_instance_2] -
                              self.interaction_energies[old_his_instance_1, old_other_instance_12] -
                              self.interaction_energies[old_his_instance_12, old_other_instance_2])

                    self.add_interaction_energy_pair(his_deprot, other_deprot, energy)

                elif his_name == 'HId':
                    self.add_interaction_energy_pair(his_prot, other_prot, 0.0)

                    energy = self.interaction_energies[old_his_instance_12, old_other_instance_2]
                    self.add_interaction_energy_pair(his_prot, other_deprot, energy)

                    energy = (self.interaction_energies[old_his_instance_2, old_other_instance_12] -
                              self.interaction_energies[old_his_instance_12, old_other_instance_12])
                    self.add_interaction_energy_pair(his_deprot, other_prot, energy)

                    energy = self.interaction_energies[old_his_instance_2, old_other_instance_2]
                    self.add_interaction_energy_pair(his_deprot, other_deprot, energy)

                combinations = self.get_interaction_combinations((old_his_instance_1, old_his_instance_2, old_his_instance_12),
                                                                 (old_other_instance_1, old_other_instance_2, old_other_instance_12))

                handled_interaction_pairs.update(combinations)

            #Handle create interaction with HIe
            elif other_name == 'HIe':
                # HIS/HIS is order dependent.
                if his_chain > other_chain or his_location >= other_location:
                    continue

                old_other = new_to_old_his[other_residue]
                old_other_instance_1 = old_other.get_instance('1')
                old_other_instance_2 = old_other.get_instance('2')
                old_other_instance_12 = old_other.get_instance('1+2')

                if his_name == 'HIe':
                    self.add_interaction_energy_pair(his_prot, other_prot, 0.0)

                    energy = (self.interaction_energies[old_his_instance_12, old_other_instance_1] -
                              self.interaction_energies[old_his_instance_12, old_other_instance_12])

                    self.add_interaction_energy_pair(his_prot, other_deprot, energy)

                    energy = self.interaction_energies[old_his_instance_1, old_other_instance_12]
                    self.add_interaction_energy_pair(his_deprot, other_prot, energy)

                    energy = self.interaction_energies[old_his_instance_1, old_other_instance_1]
                    self.add_interaction_energy_pair(his_deprot, other_deprot, energy)

                elif his_name == 'HId':
                    self.add_interaction_energy_pair(his_prot, other_prot, 0.0)
                    self.add_interaction_energy_pair(his_prot, other_deprot, 0.0)
                    self.add_interaction_energy_pair(his_deprot, other_prot, 0.0)

                    energy = (self.interaction_energies[old_his_instance_2, old_other_instance_1] +
                              self.interaction_energies[old_his_instance_12, old_other_instance_12] -
                              self.interaction_energies[old_his_instance_2, old_other_instance_12] -
                              self.interaction_energies[old_his_instance_12, old_other_instance_1])
                    self.add_interaction_energy_pair(his_deprot, other_deprot, energy)

                combinations = self.get_interaction_combinations((old_his_instance_1, old_his_instance_2, old_his_instance_12),
                                                                 (old_other_instance_1, old_other_instance_2, old_other_instance_12))

                handled_interaction_pairs.update(combinations)

            #Handle create interaction with non-HIS
            else:
                if his_name == 'HIe':
                    energy = (self.interaction_energies[old_his_instance_12, other_prot] -
                              self.interaction_energies[old_his_instance_1, other_prot])
                    self.add_interaction_energy_pair(his_prot, other_prot, energy)

                    energy = self.interaction_energies[old_his_instance_2, other_deprot]
                    self.add_interaction_energy_pair(his_prot, other_deprot, energy)

                    self.add_interaction_energy_pair(his_deprot, other_prot, 0.0)

                    energy = (self.interaction_energies[old_his_instance_1, other_deprot] +
                              self.interaction_energies[old_his_instance_2, other_deprot] -
                              self.interaction_energies[old_his_instance_12, other_deprot])
                    self.add_interaction_energy_pair(his_deprot, other_deprot, energy)

                elif his_name == 'HId':
                    energy = self.interaction_energies[old_his_instance_1, other_prot]
                    self.add_interaction_energy_pair(his_prot, other_prot, energy)

                    energy = (self.interaction_energies[old_his_instance_12, other_deprot] -
                              self.interaction_energies[old_his_instance_2, other_deprot])
                    self.add_interaction_energy_pair(his_prot, other_deprot, energy)

                    energy = (self.interaction_energies[old_his_instance_1, other_prot] +
                              self.interaction_energies[old_his_instance_2, other_prot] -
                              self.interaction_energies[old_his_instance_12, other_prot])
                    self.add_interaction_energy_pair(his_deprot, other_prot, energy)

                    self.add_interaction_energy_pair(his_deprot, other_deprot, 0.0)

                residue_combinations = self.get_interaction_combinations((old_his_instance_1, old_his_instance_2, old_his_instance_12),
                                                                 (other_prot, other_deprot))
                name_combinations = [(tup[0], tup[1]) for tup in residue_combinations]
                handled_interaction_pairs.update(name_combinations)

        #Clean out unused interaction energies
        self.drop_interaction_pairs(handled_interaction_pairs)


    def evaluate_energy(self, labeling, normal_form = True, pH=0.0):
        """Get the total energy for the residue in the state specified by labeling.

           normal_form and pH are used for testing."""
        energy = 0.0
        if not normal_form:
            ph_multiplier = 0.0
            for instance in list(labeling.values()):
                if instance.protonated:
                    ph_multiplier += 1.0

            #See https://docs.python.org/2/library/itertools.html#itertools.combinations
            for v, w in combinations(iter(self.residue_variables.items()), 2):
                v_key, v_residue = v
                w_key, w_residue = w
                is_same_his = (v_key[1:] == w_key[1:] and v_key[0] in ("HId", "HIe") and w_key[0] in ("HId", "HIe"))

                if is_same_his:
                    if labeling[v_residue].protonated and labeling[w_residue].protonated:
                        ph_multiplier -= 2.0

        for v in self.residue_variables.values():
            v_instance = labeling[v]
            energy += v_instance.energyNF if normal_form else v_instance.energy

        ie = self.normalized_interaction_energies if normal_form else self.interaction_energies
        for v, w in combinations(iter(self.residue_variables.values()),2):
            v_instance = labeling[v]
            w_instance = labeling[w]
            energy += ie[v_instance, w_instance]

        if normal_form:
            energy += self.normalized_constant_energy
        else:
            energy += pH*ph_multiplier

        return energy

    def instance_interaction_energy(self, instance, labeling, interaction_energy):
        return sum(interaction_energy.get((instance, labeling[x]),0) for x in self.residue_variables.values())

    def evaluate_energy_diff(self, residue, labeling, normal_form = False):
        """Returns the total energy difference between the deprontated and protonated
           states for the supplied residue. (protonated total energy - deprotonated total energy)"""

        ie = self.normalized_interaction_energies if normal_form else self.interaction_energies

        prot_instance = residue.instances["PROTONATED"]
        prot_energy = 0
        for x in self.residue_variables.values():
            prot_energy += ie.get((prot_instance, labeling[x]),0.0)
        prot_energy += prot_instance.energyNF if normal_form else prot_instance.energy

        deprot_instance = residue.instances["DEPROTONATED"]
        deprot_energy = sum(ie.get((deprot_instance, labeling[x]),0.0) for x in self.residue_variables.values())
        deprot_energy += deprot_instance.energyNF if normal_form else deprot_instance.energy

        return prot_energy - deprot_energy


    def evaluate_energy_diff_his(self, hie_residue, hid_residue, labeling, normal_form = False):
        """Returns the total energy differences between
             1. HSE total energy and HSP total energy (HSP total energy - HSE total energy)
             2. HSD total energy and HSP total energy (HSP total energy - HSD total energy)
            in a tuple."""

        # With both HIE and HID in protonated states:
        # HSP energy adds:
        #    unary energy of all not-this-HIS residues in current state
        #    unary energy of HSE_protonated
        #    unary energy of HSD_protonated
        #    binary energy of all not-this-HIS residues in current state
        #    binary energy of all not-this-HIS (current state) with HSE_protonated
        #    binary energy of all not-this-HIS (current state) with HSD_protonated
        #
        # HSE energy adds:
        #    unary energy of all not-this-HIS residues in current state
        #    unary energy of HSE_protonated
        #    unary energy of HSD_deprotonated
        #    binary energy of all not-this-HIS residues in current state
        #    binary energy of all not-this-HIS (current state) with HSE_protonated
        #    binary energy of all not-this-HIS (current state) with HSD_deprotonated
        #
        # HSD energy adds:
        #    unary energy of all not-this-HIS residues in current state
        #    unary energy of HSE_deprotonated
        #    unary energy of HSD_protonated
        #    binary energy of all not-this-HIS residues in current state
        #    binary energy of all not-this-HIS (current state) with HSE_deprotonated
        #    binary energy of all not-this-HIS (current state) with HSD_protonated
        #
        # HSP-HSE has
        #    unary energy of HSD_protonated (EHd1) minus
        #        unary energy of HSD_deprotonated (EHd0)
        #    binary energy of all not-this-HIS (current state) with HSD_protonated (sum_ErHd_a1) minus
        #        binary energy of all not-this-HIS (current state) with HSD_deprotonated (sum_ErHd_a0)
        #
        # HSP-HSD has
        #    unary energy of HSE_protonated (EHe1) minus
        #        unary energy of HSE_deprotonated (EHe0)
        #    binary energy of all not-this-HIS (current state) with HSE_protonated (sum_ErHe_a1) minus
        #        binary energy of all not-this-HIS (current state) with HSE_deprotonated (sum_ErHe_a0)

        labeling_copy = labeling.copy()
        ie = self.normalized_interaction_energies if normal_form else self.interaction_energies

        hie_prot_instance = hie_residue.instances["PROTONATED"]
        hie_deprot_instance = hie_residue.instances["DEPROTONATED"]
        hid_prot_instance = hid_residue.instances["PROTONATED"]
        hid_deprot_instance = hid_residue.instances["DEPROTONATED"]

        labeling_copy[hid_residue] = hid_prot_instance
        labeling_copy[hie_residue] = hie_prot_instance

        if normal_form:
            EHd1 = hid_prot_instance.energyNF
            EHd0 = hid_deprot_instance.energyNF
        else:
            EHd1 = hid_prot_instance.energy
            EHd0 = hid_deprot_instance.energy

        sum_ErHd_a1 = sum(ie.get((labeling_copy[x], hid_prot_instance), 0) for x in self.residue_variables.values())
        sum_ErHd_a0 = sum(ie.get((labeling_copy[x], hid_deprot_instance), 0) for x in self.residue_variables.values())

        if normal_form:
            EHe1 = hie_prot_instance.energyNF
            EHe0 = hie_deprot_instance.energyNF
        else:
            EHe1 = hie_prot_instance.energy
            EHe0 = hie_deprot_instance.energy

        sum_ErHe_a1 = sum(ie.get((labeling_copy[x], hie_prot_instance), 0) for x in self.residue_variables.values())
        sum_ErHe_a0 = sum(ie.get((labeling_copy[x], hie_deprot_instance), 0) for x in self.residue_variables.values())

        hsp_hse = EHd1 - EHd0 + sum_ErHd_a1 - sum_ErHd_a0
        hsp_hsd = EHe1 - EHe0 + sum_ErHe_a1 - sum_ErHe_a0

        return hsp_hse, hsp_hsd

    def normalize(self, pH):
        """Finds and stores the normal form of all instance and interaction energies at the supplied pH value.
           Instance energies are saved in instance.energyNF and interaction energies
           are stored in self.interaction_energies"""
        self.normalized_interaction_energies = self.interaction_energies.copy()
        self.normalized_constant_energy = 0.0

        #Add the pH to the instances.
        for residue in self.residue_variables.values():
            residue.instances["DEPROTONATED"].energyNF = residue.instances["DEPROTONATED"].energy
            # TODO - I'm not sure why this is +pH....
            residue.instances["PROTONATED"].energyNF = residue.instances["PROTONATED"].energy + math.log(10)*pH

        rv = self.residue_variables
        keys = list(rv.keys())

        #Add the pH values to the HIS self interactions.
        for v_key, w_key in combinations(keys, 2):
            v_residue = rv[v_key]
            w_residue = rv[w_key]

            is_same_his = (v_key[1:] == w_key[1:] and v_key[0] in ("HId", "HIe") and w_key[0] in ("HId", "HIe"))

            if is_same_his:
                v_prot = v_residue.instances["PROTONATED"]
                w_prot = w_residue.instances["PROTONATED"]
                self.normalized_interaction_energies[v_prot, w_prot] -= (2.0*math.log(10)*pH)
                self.normalized_interaction_energies[w_prot, v_prot] -= (2.0*math.log(10)*pH)


        #Normalize the interaction energies.
        for v_key, w_key in permutations(keys, 2):
            v_residue = rv[v_key]
            w_residue = rv[w_key]

            for v_instance in v_residue.instances.values():
                w_instances = list(w_residue.instances.values())
                min_energy = min(self.normalized_interaction_energies[v_instance, w_instance]
                                 for w_instance in w_instances)
                v_instance.energyNF += min_energy

                if min_energy != sys.float_info.max:
                    for w_instance in w_instances:
                        self.normalized_interaction_energies[v_instance, w_instance] -= min_energy
                        self.normalized_interaction_energies[w_instance, v_instance] -= min_energy

        #Normalize the instance energies.
        for residue in self.residue_variables.values():
            min_energy = min(instance.energyNF for instance in residue.instances.values())
            self.normalized_constant_energy += min_energy
            if min_energy != sys.float_info.max:
                for instance in residue.instances.values():
                    instance.energyNF -= min_energy


    def energy_at_pH(self, pH):
        """Create a representation of the protein energy at the specified pH
        Used primarily for testing."""
        self.interaction_energies_for_ph = self.interaction_energies.copy()

        for residue in self.residue_variables.values():
            residue.instances["DEPROTONATED"].energy_with_ph = residue.instances["DEPROTONATED"].energy
            residue.instances["PROTONATED"].energy_with_ph = residue.instances["PROTONATED"].energy + math.log(10)*pH

        for v, w in combinations(iter(self.residue_variables.items()), 2):
            v_key, v_residue = v
            w_key, w_residue = w
            is_same_his = (v_key[1:] == w_key[1:] and v_key[0] in ("HId", "HIe") and w_key[0] in ("HId", "HIe"))

            if is_same_his:
                v_prot = v_residue.instances["PROTONATED"]
                w_prot = w_residue.instances["PROTONATED"]
                self.interaction_energies_for_ph[v_prot, w_prot] -= (2.0*math.log(10)*pH)
                self.interaction_energies_for_ph[w_prot, v_prot] -= (2.0*math.log(10)*pH)