/usr/include/polymake/GenericSet.h is in polymake 3.0r2-2+b1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 | /* Copyright (c) 1997-2015
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
/** @file GenericSet.h
@brief Implementation of various kinds of pm::GenericSet types
The class definition for GenericSet is contained in Series.h
*/
/** @defgroup genericSets Generic Sets
* Functions and operations for GenericSets
* @{
*/
#ifndef POLYMAKE_GENERIC_SET_H
#define POLYMAKE_GENERIC_SET_H
#include "polymake/Series.h"
#include "polymake/GenericIO.h"
#include "polymake/internal/comparators.h"
namespace pm {
#if POLYMAKE_DEBUG
template <typename Set, typename E, typename Comparator>
GenericSet<Set,E,Comparator>::~GenericSet() { POLYMAKE_DEBUG_METHOD(GenericSet,dump); }
template <typename Set, typename E, typename Comparator>
void GenericSet<Set,E,Comparator>::dump() const { cerr << this->top() << endl; }
#endif
/* ------------
* Complement
* ------------ */
/** @ingroup genericSets
* @brief %Complement as GenericSet.
*/
template <typename SetTop, typename E=typename SetTop::element_type, typename Comparator=typename SetTop::element_comparator>
class Complement : public operators::base {
protected:
Complement();
~Complement();
public:
typedef E element_type;
typedef Comparator element_comparator;
typedef E value_type;
typedef typename container_traits<SetTop>::const_reference const_reference;
typedef const_reference reference;
typedef forward_iterator_tag container_category;
typedef GenericSet<SetTop, E, Comparator> generic_type;
typedef SetTop base_type;
const Complement& top() const { return *this; }
const SetTop& base() const { return reinterpret_cast<const SetTop&>(*this); }
bool contains(typename function_argument<E>::type k) const { return !base().contains(k); }
};
template <typename SetTop, typename E, typename Comparator>
struct redirect_object_traits< Complement<SetTop, E, Comparator> >
: spec_object_traits<is_container> {
typedef Set<E, Comparator> persistent_type;
typedef GenericSet<SetTop, E, Comparator> generic_type;
typedef is_set generic_tag;
typedef SetTop masquerade_for;
};
template <typename SetTop, typename E, typename Comparator>
struct is_suitable_container<Complement<SetTop, E, Comparator>, void, false> : True {};
/* ------------------
* SingleElementSet
* ------------------ */
template <typename E, typename Comparator>
class SingleElementSetCmp;
//! Helper class for SingleElementSetCmp implementing the element query methods.
template <typename E, typename Comparator>
class SingleElementSetContains {
protected:
typedef typename function_argument<E>::const_type elem_arg_type;
const SingleElementSetCmp<E,Comparator>& me() const { return *static_cast<const SingleElementSetCmp<E,Comparator>*>(this); }
public:
/// gives an answer whether an element is contained in the set
bool contains(elem_arg_type x) const
{
Comparator cmp;
return cmp(x, me().front())==cmp_eq;
}
typename single_value_container<E>::const_iterator find(elem_arg_type x) const
{
return contains(x) ? me().begin() : me().end();
}
const Comparator get_comparator() const { return Comparator(); }
};
template <typename Eref, typename Comparator>
class SingleElementSetCmp
: public single_value_container<Eref>,
public GenericSet<SingleElementSetCmp<Eref,Comparator>, typename deref<Eref>::type, Comparator>,
public SingleElementSetContains<Eref, Comparator> {
typedef single_value_container<Eref> _super;
public:
SingleElementSetCmp(typename _super::arg_type arg)
: _super(arg) {}
};
/** @ingroup genericSets
* @brief A set consisting of exactly one element.
*/
template <typename E>
class SingleElementSet : public SingleElementSetCmp<E, operations::cmp> {
typedef SingleElementSetCmp<E, operations::cmp> _super;
public:
SingleElementSet(typename _super::arg_type arg)
: _super(arg) {}
};
template <typename E, typename Comparator>
struct spec_object_traits< SingleElementSetCmp<E,Comparator> > : spec_object_traits< single_value_container<E> > {
static const bool is_always_const=true;
};
template <typename E>
struct spec_object_traits< SingleElementSet<E> > : spec_object_traits< single_value_container<E> > {
static const bool is_always_const=true;
};
template <typename Comparator, typename E> inline
const SingleElementSetCmp<const E&, Comparator>
scalar2set(const E& x)
{
return x;
}
/// constructs a one element set
template <typename E> inline
const SingleElementSet<const E&>
scalar2set(const E& x)
{
return x;
}
/// constructs a one element set, creating a private copy of the element inside
template <typename E> inline
const SingleElementSet<E>
scalarcopy2set(const E& x)
{
return x;
}
/* ----------
* LazySet2
* ---------- */
template <typename SetRef1, typename SetRef2, typename Controller>
class LazySet2
: public container_pair_base<SetRef1, SetRef2>,
public modified_container_pair_impl< LazySet2<SetRef1,SetRef2,Controller>,
list( Container1< SetRef1 >,
Container2< SetRef2 >,
IteratorCoupler< zipping_coupler<typename deref<SetRef1>::type::element_comparator, Controller> >,
Operation< BuildBinaryIt<operations::zipper> >,
IteratorConstructor< binary_transform_constructor< Bijective<False> > > ) >,
public GenericSet< LazySet2<SetRef1,SetRef2,Controller>,
typename identical<typename deref<SetRef1>::type::element_type,
typename deref<SetRef2>::type::element_type>::type,
typename identical<typename deref<SetRef1>::type::element_comparator,
typename deref<SetRef2>::type::element_comparator>::type
> {
typedef container_pair_base<SetRef1, SetRef2> _base;
typedef modified_container_pair_impl<LazySet2> _super;
public:
typedef indexed cannot_enforce_features;
LazySet2(typename _base::first_arg_type src1_arg, typename _base::second_arg_type src2_arg,
Controller=Controller())
: _base(src1_arg,src2_arg) {}
const typename deref<SetRef1>::type::element_comparator& get_comparator() const
{
return this->get_container1().get_comparator();
}
bool contains(typename function_argument<typename deref<SetRef1>::type::element_type>::type x) const
{
return Controller::contains(this->get_container1().contains(x), this->get_container2().contains(x));
}
};
template <typename SetRef1, typename Set2>
class LazySet2<SetRef1, const Complement<Set2>&, set_difference_zipper>
: public LazySet2<SetRef1, const Set2&, set_intersection_zipper> {
typedef LazySet2<SetRef1, const Set2&, set_intersection_zipper> _super;
public:
typedef const Complement<Set2>& second_arg_type;
LazySet2(typename _super::first_arg_type src1_arg, second_arg_type src2_arg)
: _super(src1_arg, src2_arg.base()) {}
};
template <typename SetRef1, typename Set2>
class LazySet2<SetRef1, const Complement<Set2>&, set_intersection_zipper>
: public LazySet2<SetRef1, const Set2&, set_difference_zipper> {
typedef LazySet2<SetRef1, const Set2&, set_difference_zipper> _super;
public:
typedef const Complement<Set2>& second_arg_type;
LazySet2(typename _super::first_arg_type src1_arg, second_arg_type src2_arg)
: _super(src1_arg, src2_arg.base()) {}
};
template <typename Set1, typename SetRef2>
class LazySet2<const Complement<Set1>&, SetRef2, set_intersection_zipper>
: public LazySet2<SetRef2, const Set1&, set_difference_zipper> {
typedef LazySet2<SetRef2, const Set1&, set_difference_zipper> _super;
public:
typedef const Complement<Set1>& first_arg_type;
LazySet2(first_arg_type src1_arg, typename _super::second_arg_type src2_arg)
: _super(src1_arg.base(), src2_arg) {}
};
template <typename SetRef1, typename SetRef2, typename Controller>
struct spec_object_traits< LazySet2<SetRef1, SetRef2, Controller> >
: spec_object_traits<is_container> {
static const bool is_lazy=true, is_temporary=true, is_always_const=true;
};
/* -----------------------------
* Set with assigned dimension
* ----------------------------- */
template <typename SetRef,
bool _is_complement=derived_from_instance3<typename deref<SetRef>::type,Complement>::value>
struct complement_helper : False {
typedef typename deref<SetRef>::type container;
typedef container base_type;
typedef const container& container_ref;
static int size(container_ref c, int) { return c.size(); }
};
template <typename SetRef>
struct complement_helper<SetRef, true> : True {
typedef typename deref<SetRef>::type::base_type base_type;
typedef LazySet2<sequence, const base_type&, set_difference_zipper> container;
typedef container container_ref;
static int size(SetRef c, int d) { return d-c.base().size(); }
};
/** @ingroup genericSets
* @brief %Set_with_dim as GenericSet.
*/
template <typename SetRef>
class Set_with_dim
: public modified_container_impl< Set_with_dim<SetRef>,
list( Container< typename complement_helper<SetRef>::container >,
Operation< pair<nothing, operations::identity<int> > >,
ExpectedFeatures<end_sensitive> ) >,
public GenericSet< Set_with_dim<SetRef>, typename deref<SetRef>::type::element_type,
typename deref<SetRef>::type::element_comparator> {
typedef modified_container_impl<Set_with_dim> _super;
typedef typename function_argument<typename deref<SetRef>::type::element_type>::type elem_arg_type;
typedef complement_helper<SetRef> helper;
protected:
alias<SetRef> set;
int _dim;
public:
typedef typename alias<SetRef>::arg_type arg_type;
Set_with_dim(arg_type set_arg, int dim_arg)
: set(set_arg), _dim(dim_arg) {}
const typename helper::base_type& get_set() const
{
return _get_set(helper());
}
typename helper::container_ref get_container() const
{
return _get_container(helper());
}
/// the size of the set
int size() const
{
return _size(helper());
}
int max_size() const
{
return _dim;
}
int dim() const
{
return _dim;
}
bool contains(elem_arg_type x) const
{
return get_container().contains(x);
}
const typename deref<SetRef>::type::element_comparator& get_comparator() const
{
return get_set().get_comparator();
}
typename _super::const_iterator find(elem_arg_type x) const
{
return get_container().find(x);
}
private:
const typename helper::base_type& _get_set(False) const
{
return *set;
}
const typename helper::base_type& _get_set(True) const
{
return set->base();
}
typename helper::container_ref _get_container(False) const
{
return _get_set(False());
}
typename helper::container_ref _get_container(True) const
{
return typename helper::container(sequence(0,_dim), _get_set(True()));
}
int _size(False) const
{
return _get_set(False()).size();
}
int _size(True) const
{
return _dim-_get_set(True()).size();
}
};
template <typename SetRef>
struct check_container_feature<Set_with_dim<SetRef>, sparse_compatible> : True {};
template <typename SetRef,
bool _has_dim=check_container_feature<typename complement_helper<SetRef>::container, sparse_compatible>::value>
struct Set_with_dim_helper : True {
typedef SetRef container;
typedef typename attrib<SetRef>::plus_const_ref container_ref;
typedef alias<SetRef> alias_type;
static container_ref create(container_ref c, int) { return c; }
static container_ref get_set(container_ref c) { return c; }
static typename alias_type::const_reference deref(const alias_type& a) { return *a; }
};
template <typename SetRef>
struct Set_with_dim_helper<SetRef, false> : False {
typedef Set_with_dim<SetRef> alias_type;
typedef alias_type container;
static alias_type create(typename alias_type::arg_type c, int d)
{
return container(c,d);
}
static const typename complement_helper<SetRef>::base_type& get_set(const container& c)
{
return c.get_set();
}
static const container& deref(const alias_type& a) { return a; }
};
/** @ingroup genericSets
* @namespace operations
* @brief functors for %operations on GenericSet objects
*/
namespace operations {
template <typename OpRef>
struct bitwise_inv_impl<OpRef, is_set> {
typedef OpRef argument_type;
typedef const Complement<typename deref<OpRef>::type>& result_type;
result_type operator() (typename function_argument<OpRef>::const_type x) const
{
return reinterpret_cast<result_type>(x);
}
};
template <typename Set>
struct bitwise_inv_impl<const Complement<Set>&, is_set> {
typedef const Complement<Set>& argument_type;
typedef const Set& result_type;
result_type operator() (argument_type x) const
{
return x.base();
}
};
template <typename LeftRef, typename RightRef>
struct add_impl<LeftRef, RightRef, cons<is_set, is_set> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef LazySet2<typename attrib<LeftRef>::plus_const, typename attrib<RightRef>::plus_const, set_union_zipper> result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
return result_type(l,r);
}
template <typename Iterator2>
typename function_argument<LeftRef>::const_type
operator() (partial_left, typename function_argument<LeftRef>::const_type l, const Iterator2&) const
{
return l;
}
template <typename Iterator1>
typename function_argument<RightRef>::const_type
operator() (partial_right, const Iterator1&, typename function_argument<RightRef>::const_type r) const
{
return r;
}
void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
{
l+=r;
}
};
template <typename LeftRef, typename RightRef>
struct add_impl<LeftRef, RightRef, cons<is_set, is_scalar> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef typename deref<LeftRef>::type::element_comparator Comparator;
typedef SingleElementSetCmp<typename attrib<RightRef>::plus_const, Comparator> Right;
typedef LazySet2<typename attrib<LeftRef>::plus_const, Right, set_union_zipper> result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
return result_type(l,r);
}
void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
{
l+=r;
}
};
template <typename LeftRef, typename RightRef>
struct add_impl<LeftRef, RightRef, cons<is_scalar, is_set> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef typename deref<RightRef>::type::element_comparator Comparator;
typedef SingleElementSetCmp<typename attrib<LeftRef>::plus_const, Comparator> Left;
typedef LazySet2<Left, typename attrib<RightRef>::plus_const, set_union_zipper> result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
return result_type(l,r);
}
};
template <typename LeftRef, typename RightRef>
struct sub_impl<LeftRef, RightRef, cons<is_set, is_set> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef LazySet2<typename attrib<LeftRef>::plus_const, typename attrib<RightRef>::plus_const, set_difference_zipper> result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const {
return result_type(l,r);
}
template <typename Iterator2>
typename function_argument<LeftRef>::const_type
operator() (partial_left, typename function_argument<LeftRef>::const_type l, const Iterator2&) const
{
return l;
}
template <typename Iterator1>
typename result_type::persistent_type
operator() (partial_right, const Iterator1&, typename function_argument<RightRef>::const_type) const
{
return typename result_type::persistent_type();
}
void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
{
l-=r;
}
};
template <typename LeftRef, typename RightRef>
struct sub_impl<LeftRef, RightRef, cons<is_set, is_scalar> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef typename deref<LeftRef>::type::element_comparator Comparator;
typedef SingleElementSetCmp<typename attrib<RightRef>::plus_const, Comparator> Right;
typedef LazySet2<typename attrib<LeftRef>::plus_const, Right, set_difference_zipper> result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
return result_type(l,r);
}
void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
{
l-=r;
}
};
template <typename LeftRef, typename RightRef>
struct mul_impl<LeftRef, RightRef, cons<is_set, is_set> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef LazySet2<typename attrib<LeftRef>::plus_const, typename attrib<RightRef>::plus_const, set_intersection_zipper> result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
return result_type(l,r);
}
void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
{
l*=r;
}
};
template <typename LeftRef, typename RightRef>
struct mul_impl<LeftRef, RightRef, cons<is_set, is_scalar> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef typename deref<LeftRef>::type::element_comparator Comparator;
typedef SingleElementSetCmp<typename attrib<RightRef>::plus_const, Comparator> Right;
typedef LazySet2<typename attrib<LeftRef>::plus_const, Right, set_intersection_zipper> result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
return result_type(l,r);
}
};
template <typename LeftRef, typename RightRef>
struct mul_impl<LeftRef, RightRef, cons<is_scalar, is_set> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef typename deref<RightRef>::type::element_comparator Comparator;
typedef SingleElementSetCmp<typename attrib<LeftRef>::plus_const, Comparator> Left;
typedef LazySet2<Left, typename attrib<RightRef>::plus_const, set_intersection_zipper> result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
return result_type(l,r);
}
};
template <typename LeftRef, typename RightRef>
struct bitwise_xor_impl<LeftRef, RightRef, cons<is_set, is_set> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef LazySet2<typename attrib<LeftRef>::plus_const, typename attrib<RightRef>::plus_const, set_symdifference_zipper> result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
return result_type(l,r);
}
template <typename Iterator2>
typename function_argument<LeftRef>::const_type
operator() (partial_left, typename function_argument<LeftRef>::const_type l, const Iterator2&) const
{
return l;
}
template <typename Iterator1>
typename function_argument<RightRef>::const_type
operator() (partial_right, const Iterator1&, typename function_argument<RightRef>::const_type r) const
{
return r;
}
void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
{
l^=r;
}
};
template <typename LeftRef, typename RightRef>
struct bitwise_xor_impl<LeftRef, RightRef, cons<is_set, is_scalar> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef typename deref<LeftRef>::type::element_comparator Comparator;
typedef SingleElementSetCmp<typename attrib<RightRef>::plus_const, Comparator> Right;
typedef LazySet2<typename attrib<LeftRef>::plus_const, Right, set_symdifference_zipper> result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
return result_type(l,r);
}
void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
{
l^=r;
}
};
template <typename LeftRef, typename RightRef>
struct bitwise_xor_impl<LeftRef, RightRef, cons<is_scalar, is_set> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef typename deref<RightRef>::type::element_comparator Comparator;
typedef SingleElementSetCmp<typename attrib<LeftRef>::plus_const,Comparator> Left;
typedef LazySet2<Left, typename attrib<RightRef>::plus_const, set_symdifference_zipper> result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
return result_type(l,r);
}
};
template <typename LeftRef, typename RightRef>
struct includes {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef bool result_type;
result_type operator() (typename function_argument<LeftRef>::const_type s1,
typename function_argument<RightRef>::const_type s2) const
{
return incl(s2,s1)<1;
}
};
template <typename SetRef>
class element_of {
alias<SetRef> set;
public:
typedef typename deref<SetRef>::type set_type;
typedef typename set_type::element_type argument_type;
typedef bool result_type;
element_of(typename alias<SetRef>::arg_type set_arg) : set(set_arg) {}
result_type operator() (typename function_argument<argument_type>::type x) const
{
return set->contains(x);
}
};
} // end namespace operations
/** @namespace operators
@brief functors for %operators on GenericSet objects
*/
namespace operators {
/// union of two GenericSet objects
template <typename Set1, typename Set2> inline
typename operations::add_impl<const Set1&, const Set2&>::result_type
operator+ (const GenericSet<Set1>& l, const GenericSet<Set2>& r)
{
operations::add_impl<const Set1&, const Set2&> op;
return op(l.top(), r.top());
}
/// union of a GenericSet and a singleton
template <typename Set1, typename E> inline
typename operations::add_impl<const Set1&, const E&>::result_type
operator+ (const GenericSet<Set1,E>& l, const E& r)
{
operations::add_impl<const Set1&, const E&> op;
return op(l.top(), r);
}
/// union of singleton and a GenericSet
template <typename E, typename Set2> inline
typename operations::add_impl<const E&, const Set2&>::result_type
operator+ (const E& l, const GenericSet<Set2,E>& r)
{
operations::add_impl<const E&, const Set2&> op;
return op(l, r.top());
}
/// difference of two GenericSet objects
template <typename Set1, typename Set2> inline
typename operations::sub_impl<const Set1&, const Set2&>::result_type
operator- (const GenericSet<Set1>& l, const GenericSet<Set2>& r)
{
operations::sub_impl<const Set1&, const Set2&> op;
return op(l.top(), r.top());
}
/// difference of GenericSet and a singleton
template <typename Set1, typename E> inline
typename operations::sub_impl<const Set1&, const E&>::result_type
operator- (const GenericSet<Set1,E>& l, const E& r)
{
operations::sub_impl<const Set1&, const E&> op;
return op(l.top(), r);
}
template <typename Set1, typename Set2> inline
typename operations::sub_impl<const Set1&, const Set2&>::result_type
operator- (const GenericSet<Set1>& l, const Complement<Set2>& r)
{
operations::sub_impl<const Set1&, const Complement<Set2>&> op;
return op(l.top(), r);
}
/// equality of GenericSet objects
template <typename Set1, typename Set2> inline
bool operator== (const GenericSet<Set1>& l, const GenericSet<Set2>& r)
{
operations::eq<const Set1&, const Set2&> cmp_op;
return cmp_op(l.top(), r.top());
}
/// containment between GenericSet objects
template <typename Set1, typename Set2> inline
bool operator< (const GenericSet<Set1>& l, const GenericSet<Set2>& r)
{
operations::lt<const Set1&, const Set2&> cmp_op;
return cmp_op(l.top(), r.top());
}
} // end namespace operators
template <typename Set1, typename Set2, bool _both_have_size=
(iterator_traits<typename Set1::iterator>::is_bidirectional &&
iterator_traits<typename Set2::iterator>::is_bidirectional)>
struct size_estimator {
/** Estimates how the insertion or removal of a sequence of elements could be made faster.
Returns true if \\n2*log(n1) < n1+n2\\, which means that seeking for each element of set2
in set1 would be faster than sequentially comparing element pairs from set1 and set2.
*/
static bool seek_cheaper_than_sequential(const Set1& set1, const Set2& set2)
{
const int n1=set1.size(), n2=set2.size();
return n2==0 || set1.tree_form() && ( n1/n2>=31 || (1<<(n1/n2))>n1 );
}
static int compare(const Set1& set1, const Set2& set2)
{
return sign(set1.size()-set2.size());
}
};
template <typename Set1, typename Set2>
struct size_estimator<Set1, Set2, false> {
static bool seek_cheaper_than_sequential(const Set1&, const Set2&) { return true; }
static int compare(const Set1&, const Set2&) { return 0; }
};
/** Analyze the inclusion relation of two sets.
@returnval 0 $s1$ and $s2$ are equal
@returnval -1 $s1$ is included in $s2$
@returnval 1 $s2$ is included in $s1$
@returnval 2 $s1$ and $s2$ are independent
*/
template <typename Set1, typename Set2, typename E1, typename E2, class Comparator>
int incl(const GenericSet<Set1, E1, Comparator>& s1, const GenericSet<Set2, E2, Comparator>& s2)
{
typename Entire<Set1>::const_iterator e1=entire(s1.top());
typename Entire<Set2>::const_iterator e2=entire(s2.top());
int result = size_estimator<Set1, Set2>::compare(s1.top(),s2.top());
while (!e1.at_end() && !e2.at_end()) {
switch (s1.top().get_comparator()(*e2,*e1)) {
case cmp_eq: ++e1; ++e2; break;
case cmp_lt:
if (result>0) return 2;
result=-1;
++e2;
break;
case cmp_gt:
if (result<0) return 2;
result=1;
++e1;
break;
}
}
if ((!e1.at_end() && result<0) || (!e2.at_end() && result>0)) return 2;
return result;
}
template <typename Container, typename Comparator=operations::cmp, typename ProvidedFeatures=void>
class OrderedContainer
: public redirected_container< OrderedContainer<Container,Comparator,ProvidedFeatures>,
list( Hidden< Container >,
ExpectedFeatures< ProvidedFeatures > ) >,
public GenericSet< OrderedContainer<Container,Comparator,ProvidedFeatures>,
typename object_traits<typename Container::value_type>::persistent_type,
Comparator > {};
template <typename Container, typename Comparator, typename ProvidedFeatures, typename Feature>
struct enforce_features<OrderedContainer<Container, Comparator, ProvidedFeatures>, Feature> {
typedef OrderedContainer<Container, Comparator, typename mix_features<ProvidedFeatures, Feature>::type> container;
};
template <typename Container> inline
const OrderedContainer<Container>&
assure_ordered(const Container& c)
{
return reinterpret_cast<const OrderedContainer<Container>&>(c);
}
template <typename Comparator, typename Container> inline
const OrderedContainer<Container, Comparator>&
assure_ordered(const Container& c)
{
return reinterpret_cast<const OrderedContainer<Container, Comparator>&>(c);
}
template <typename ContainerRef>
class Indices
: public modified_container_impl< Indices<ContainerRef>,
list( Container< ContainerRef >,
Operation< BuildUnaryIt<operations::index2element> >,
ExpectedFeatures< indexed > ) >,
public GenericSet< Indices<ContainerRef>, int, operations::cmp> {
typedef modified_container_impl<Indices> _super;
protected:
alias<ContainerRef> c;
public:
typedef typename least_derived< cons<bidirectional_iterator_tag, typename container_traits<ContainerRef>::category> >::type
container_category;
Indices(typename alias<ContainerRef>::arg_type c_arg) : c(c_arg) {}
const typename _super::container& get_container() const { return *c; }
bool contains(int i) const { return !get_container().find(i).at_end(); }
typename _super::const_iterator find(int i) const { return get_container().find(i); }
};
template <typename ContainerRef>
struct spec_object_traits< Indices<ContainerRef> >
: spec_object_traits<is_container> {
static const bool is_temporary=true, is_always_const=true;
};
template <typename Container> inline
const Indices<const Container&>
indices(const Container& c)
{
return c;
}
template <typename Set>
struct hash_func<Set, is_set> {
size_t operator() (const Set& s) const
{
hash_func<typename Set::element_type> element_hasher;
size_t a=1, b=0;
for (typename pm::Entire<Set>::const_iterator e=entire(s); !e.at_end(); ++e, ++b)
a=a*element_hasher(*e)+b;
return a;
}
};
} // end namespace pm
namespace polymake {
using pm::GenericSet;
using pm::scalar2set;
using pm::assure_ordered;
using pm::Indices;
using pm::indices;
namespace operations {
typedef BuildBinary<pm::operations::includes> includes;
template <typename Set> inline
pm::operations::element_of<const Set&> element_of(const Set& s) { return s; }
}
}
#endif // POLYMAKE_GENERIC_SET_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|