/usr/include/polymake/GenericVector.h is in polymake 3.0r2-2+b1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 | /* Copyright (c) 1997-2015
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef POLYMAKE_GENERIC_VECTOR_H
#define POLYMAKE_GENERIC_VECTOR_H
#include "polymake/GenericIO.h"
#include "polymake/TransformedContainer.h"
#include "polymake/internal/converters.h"
#include "polymake/IndexedSubset.h"
#include "polymake/SelectedSubset.h"
#include "polymake/ContainerChain.h"
#include "polymake/internal/sparse.h"
#include <algorithm>
#include <stdexcept>
namespace pm {
template <typename E> class Vector;
template <typename E> class SparseVector;
/** @file GenericVector.h
@class GenericVector
@brief @ref generic "Generic type" for @ref vector_sec "vectors"
*/
template <typename VectorTop, typename E=typename VectorTop::element_type>
class GenericVector : public Generic<VectorTop>, public operators::base {
template <typename, typename> friend class GenericVector;
protected:
GenericVector() {}
GenericVector(const GenericVector&) {}
#if POLYMAKE_DEBUG
~GenericVector() { POLYMAKE_DEBUG_METHOD(GenericVector,dump); }
void dump() const { cerr << *this << endl; }
#endif
public:
/// element type
typedef E element_type;
/// determine if the persistent type is sparse
static const bool is_sparse=check_container_feature<VectorTop, sparse>::value;
/// @ref generic "persistent type"
typedef typename if_else<is_sparse, SparseVector<E>, Vector<E> >::type persistent_type;
/// top type
typedef typename Generic<VectorTop>::top_type top_type;
/// @ref generic "generic type"
typedef GenericVector generic_type;
typedef typename if_else<check_container_feature<VectorTop, pure_sparse>::value, pure_sparse,
typename if_else<is_sparse, sparse, dense>::type>::type
sparse_discr;
protected:
template <typename Vector2>
typename enable_if<void, convertible_to<typename Vector2::value_type, E>::value>::type
_assign(const Vector2& v, dense)
{
copy(ensure(v, (dense*)0).begin(), entire(this->top()));
}
template <typename Vector2>
typename enable_if<void, explicitly_convertible_to<typename Vector2::value_type, E>::value>::type
_assign(const Vector2& v, dense)
{
copy(ensure(attach_converter<E>(v), (dense*)0).begin(), entire(this->top()));
}
template <typename Vector2>
typename enable_if<void, convertible_to<typename Vector2::value_type, E>::value>::type
_assign(const Vector2& v, pure_sparse)
{
assign_sparse(this->top(), ensure(v, (pure_sparse*)0).begin());
}
template <typename Vector2>
typename enable_if<void, explicitly_convertible_to<typename Vector2::value_type, E>::value>::type
_assign(const Vector2& v, pure_sparse)
{
assign_sparse(this->top(), make_converting_iterator<E>(ensure(v, (pure_sparse*)0).begin()));
}
template <typename Vector2>
bool trivial_assignment(const GenericVector<Vector2, E>&) const { return false; }
bool trivial_assignment(const GenericVector& v) const { return this==&v; }
template <typename Vector2>
void swap(GenericVector<Vector2, E>& v, dense)
{
swap_ranges(entire(this->top()), v.top().begin());
}
template <typename Vector2>
void swap(GenericVector<Vector2, E>& v, pure_sparse)
{
swap_sparse(this->top(), ensure(v.top(), (pure_sparse*)0));
}
template <typename Vector2>
void assign(const Vector2& v)
{
_assign(v, sparse_discr());
}
template <typename Vector2, typename Operation>
void _assign_op(const Vector2& v, const Operation& op_arg, dense, dense)
{
perform_assign(entire(this->top()), v.begin(), op_arg);
}
template <typename Vector2, typename Operation>
void _assign_op(const Vector2& v, const Operation& op_arg, dense, sparse)
{
typedef typename Entire<Vector2>::const_iterator iterator2;
typedef binary_op_builder<Operation, typename VectorTop::const_iterator, iterator2> opb;
const typename opb::operation& op=opb::create(op_arg);
int i_prev=0;
typename VectorTop::iterator dst=this->top().begin();
for (iterator2 src2=entire(v); !src2.at_end(); ++src2) {
int i=src2.index();
std::advance(dst, i-i_prev);
op.assign(*dst, *src2);
i_prev=i;
}
}
template <typename Vector2, typename Operation, typename discr2>
typename disable_if<void, operations::is_partially_defined_for<Operation, VectorTop, Vector2>::value>::type
_assign_op(const Vector2& v, const Operation& op, sparse, discr2)
{
perform_assign(entire(this->top()), v.begin(), op);
}
template <typename Vector2, typename Operation, typename discr2>
typename enable_if<void, operations::is_partially_defined_for<Operation, VectorTop, Vector2>::value>::type
_assign_op(const Vector2& v, const Operation& op, sparse, discr2)
{
perform_assign_sparse(this->top(), ensure(v, (pure_sparse*)0).begin(), op);
}
template <typename E2>
void _fill(const E2& x, dense)
{
pm::fill(entire(this->top()), x);
}
template <typename E2>
void _fill(const E2& x, pure_sparse)
{
if (x)
fill_sparse(this->top(), ensure(constant(x), (indexed*)0).begin());
else
this->top().clear();
}
// undefined for dense
void remove0s(dense);
void remove0s(pure_sparse)
{
top_type& me=this->top();
typename VectorTop::iterator e=me.begin();
while (!e.at_end())
if (*e) ++e;
else me.erase(e++);
}
public:
int dim() const { return get_dim(this->top()); }
template <typename Vector2>
void swap(GenericVector<Vector2,E>& v)
{
if (trivial_assignment(v)) return;
if (POLYMAKE_DEBUG || !Unwary<VectorTop>::value || !Unwary<Vector2>::value) {
if (dim() != v.dim())
throw std::runtime_error("GenericVector::swap - dimension mismatch");
}
typedef typename if_else<check_container_feature<VectorTop, sparse>::value ||
check_container_feature<Vector2, sparse>::value,
pure_sparse, dense>::type
sparse_discr2;
swap(v, sparse_discr2());
}
template <typename Operation>
void assign_op(const Operation& op)
{
perform_assign(entire(this->top()), op);
}
template <typename Vector2, typename Operation>
void assign_op(const Vector2& v, const Operation& op)
{
typedef typename if_else<check_container_feature<Vector2,sparse>::value, sparse, dense>::type sparse_discr2;
_assign_op(v, op, sparse_discr(), sparse_discr2());
}
template <typename E2>
void fill(const E2& x)
{
this->top()._fill(x, sparse_discr());
}
top_type& operator= (const GenericVector& v)
{
if (!trivial_assignment(v)) {
if (!object_traits<VectorTop>::is_resizeable && (POLYMAKE_DEBUG || !Unwary<VectorTop>::value)) {
if (dim() != v.dim())
throw std::runtime_error("GenericVector::operator= - dimension mismatch");
}
this->top().assign(v.top());
}
return this->top();
}
template <typename Vector2, typename E2>
typename enable_if<top_type, (convertible_to<E2, E>::value || explicitly_convertible_to<E2, E>::value)>::type&
operator= (const GenericVector<Vector2, E2>& v)
{
if (!object_traits<VectorTop>::is_resizeable && (POLYMAKE_DEBUG || !Unwary<VectorTop>::value)) {
if (dim() != v.dim())
throw std::runtime_error("GenericVector::operator= - dimension mismatch");
}
this->top().assign(v.top());
return this->top();
}
template <typename E2, size_t size>
typename enable_if<top_type, (convertible_to<E2, E>::value || explicitly_convertible_to<E2, E>::value)>::type&
operator= (const E2 (&a)[size])
{
if (!object_traits<VectorTop>::is_resizeable && (POLYMAKE_DEBUG || !Unwary<VectorTop>::value)) {
if (dim() != size)
throw std::runtime_error("GenericVector::operator= - dimension mismatch");
}
this->top().assign(array2container(a));
return this->top();
}
top_type& negate()
{
this->top().assign_op(BuildUnary<operations::neg>());
return this->top();
}
/// adding a GenericVector
template <typename Vector2>
top_type& operator+= (const GenericVector<Vector2>& v)
{
if (POLYMAKE_DEBUG || !Unwary<VectorTop>::value || !Unwary<Vector2>::value) {
if (dim() != v.dim())
throw std::runtime_error("GenericVector::operator+= - dimension mismatch");
}
this->top().assign_op(v.top(), BuildBinary<operations::add>());
return this->top();
}
/// subtracting a GenericVector
template <typename Vector2>
top_type& operator-= (const GenericVector<Vector2>& v)
{
if (POLYMAKE_DEBUG || !Unwary<VectorTop>::value || !Unwary<Vector2>::value) {
if (dim() != v.dim())
throw std::runtime_error("GenericVector::operator-= - dimension mismatch");
}
this->top().assign_op(v.top(), BuildBinary<operations::sub>());
return this->top();
}
/// multiply with an element
template <typename Right>
top_type& operator*= (const Right& r)
{
if (!is_zero(r))
this->top().assign_op(constant(r), BuildBinary<operations::mul>());
else
fill(r);
return this->top();
}
/// appending an element
template <typename Right>
top_type& operator/= (const Right& r)
{
this->top().assign_op(constant(r), BuildBinary<operations::div>());
return this->top();
}
/// divide by an element
template <typename Right>
top_type& div_exact(const Right& r)
{
this->top().assign_op(constant(r), BuildBinary<operations::divexact>());
return this->top();
}
/// divides by the first element
top_type& dehomogenize()
{
const E first=this->top().front();
this->top()/=first;
return this->top();
}
/// subtracts first element
top_type& dehomogenize_trop()
{
const E first=this->top().front();
this->top()-=first;
return this->top();
}
/// remove all zero elements which might have been overseen in some previous operation
void remove0s()
{
remove0s(sparse_discr());
}
//@{
/**
* Select a vector slice consisting of elements with given indices.
* The last variant selects a contiguous range of indices beginning
* with start.
* size==0 means up to the end of the vector.
* The const variants of these methods create immutable slice objects.
* The indices must lie in the valid range.
*/
template <typename IndexSet>
typename enable_if< IndexedSlice<typename Unwary<VectorTop>::type&, const typename Concrete<IndexSet>::type&>,
isomorphic_to_container_of<IndexSet, int>::value >::type
slice(const IndexSet& indices)
{
if (POLYMAKE_DEBUG || !Unwary<VectorTop>::value) {
if (!set_within_range(indices, dim()))
throw std::runtime_error("GenericVector::slice - indices out of range");
}
return IndexedSlice<typename Unwary<VectorTop>::type&, const typename Concrete<IndexSet>::type&>(this->top(), concrete(indices));
}
template <typename IndexSet>
typename enable_if< const IndexedSlice<const typename Unwary<VectorTop>::type&, const typename Concrete<IndexSet>::type&>,
isomorphic_to_container_of<IndexSet, int>::value >::type
slice(const IndexSet& indices) const
{
if (POLYMAKE_DEBUG || !Unwary<VectorTop>::value) {
if (!set_within_range(indices, dim()))
throw std::runtime_error("GenericVector::slice - indices out of range");
}
return IndexedSlice<const typename Unwary<VectorTop>::type&, const typename Concrete<IndexSet>::type&>(this->top(), concrete(indices));
}
IndexedSlice<typename Unwary<VectorTop>::type&, sequence>
slice(int sstart, int ssize=0)
{
if (sstart<0) sstart+=dim();
if (!ssize) ssize=dim()-sstart;
if (POLYMAKE_DEBUG || !Unwary<VectorTop>::value) {
if (ssize<0 || sstart<0 || sstart+ssize>dim())
throw std::runtime_error("GenericVector::slice - indices out of range");
}
return IndexedSlice<typename Unwary<VectorTop>::type&, sequence>(this->top(), sequence(sstart,ssize));
}
const IndexedSlice<const typename Unwary<VectorTop>::type&, sequence>
slice(int sstart, int ssize=0) const
{
if (sstart<0) sstart+=dim();
if (!ssize) ssize=dim()-sstart;
if (POLYMAKE_DEBUG || !Unwary<VectorTop>::value) {
if (ssize<0 || sstart<0 || sstart+ssize>dim())
throw std::runtime_error("GenericVector::slice - indices out of range");
}
return IndexedSlice<const typename Unwary<VectorTop>::type&, sequence>(this->top(), sequence(sstart,ssize));
}
//@}
template <typename Result>
struct rebind_generic {
typedef GenericVector<Result, E> type;
};
// stub for RowChain/ColChain
void stretch_dim(int d) const
{
if (d) throw std::runtime_error("dimension mismatch");
}
};
struct is_vector;
template <typename Vector, typename E>
struct spec_object_traits< GenericVector<Vector, E> >
: spec_or_model_traits<Vector,is_container> {
typedef is_vector generic_tag;
static const bool allow_sparse=true;
static bool is_zero(const Vector& v)
{
return entire(attach_selector(v, BuildUnary<operations::non_zero>())).at_end();
}
};
/** @class FixedVector
@brief Built-in array decorated as a vector
*/
template <typename E, size_t _size>
class FixedVector
: public fixed_array<E,_size>,
public GenericVector<FixedVector<E,_size>, E> {
public:
/// create empty vector
FixedVector(int=0)
{
if (is_pod<E>::value) clear();
}
/// create vector of given length with constant element
FixedVector(int, const E& init)
{
fill(entire(*this), init);
}
FixedVector(const E (&init)[_size])
{
copy(entire(*this), init+0);
}
template <typename E2>
explicit FixedVector(const E2 (&init)[_size])
{
copy(entire(*this), attach_converter<E>(array2container(init)).begin());
}
/// create vector from iterator
template <typename Iterator>
FixedVector(int, Iterator src)
{
copy(src, entire(*this));
}
/// create vector from GenericVector
template <typename Vector>
FixedVector(const GenericVector<Vector, E>& v)
{
if (POLYMAKE_DEBUG) {
if (v.dim() != this->size())
throw std::runtime_error("FixedVector constructor - dimension mismatch");
}
this->_assign(v.top(), dense());
}
template <typename Vector, typename E2>
explicit FixedVector(const GenericVector<Vector, E2>& v,
typename enable_if<void**, (convertible_to<E2, E>::value || explicitly_convertible_to<E2, E>::value)>::type=0)
{
if (POLYMAKE_DEBUG) {
if (v.dim() != this->size())
throw std::runtime_error("FixedVector constructor - dimension mismatch");
}
this->_assign(v.top(), dense());
}
FixedVector& operator= (const FixedVector& other) { return FixedVector::generic_type::operator=(other); }
using FixedVector::generic_type::operator=;
/// fill with zeroes
void clear()
{
fill(entire(*this), zero_value<E>());
}
protected:
friend class GenericVector<FixedVector>;
};
template <typename E, size_t size>
struct spec_object_traits< FixedVector<E,size> >
: spec_object_traits<is_container> {
static const int is_resizeable=0;
};
template <typename E, size_t size> inline
FixedVector<E,size>& array2vector(E (&a)[size])
{
return reinterpret_cast<FixedVector<E,size>&>(a);
}
template <typename E, size_t size> inline
const FixedVector<E,size>& array2vector(const E (&a)[size])
{
return reinterpret_cast<const FixedVector<E,size>&>(a);
}
/* --------------------------------------------
* LazyVector1
* lazy evaluation of an unary vector operator
* -------------------------------------------- */
template <typename VectorRef, typename Operation>
class LazyVector1
: public TransformedContainer<VectorRef, Operation>,
public GenericVector< LazyVector1<VectorRef,Operation>,
typename object_traits<typename TransformedContainer<VectorRef,Operation>::value_type>::persistent_type > {
typedef TransformedContainer<VectorRef, Operation> _super;
public:
LazyVector1(typename _super::arg_type src_arg, const Operation& op_arg=Operation())
: _super(src_arg, op_arg) {}
int dim() const { return get_dim(this->get_container()); }
};
template <typename VectorRef, typename Operation>
struct spec_object_traits< LazyVector1<VectorRef,Operation> >
: spec_object_traits<is_container> {
static const bool is_lazy=true, is_temporary=true, is_always_const=true;
};
template <typename VectorRef, typename Operation, typename Feature>
struct check_container_feature<LazyVector1<VectorRef,Operation>, Feature>
: check_container_feature<TransformedContainer<VectorRef,Operation>, Feature> {};
/* --------------------------------------------
* LazyVector2
* lazy evaluation of a binary vector operator
* -------------------------------------------- */
template <typename VectorRef1, typename VectorRef2, typename Operation>
class LazyVector2
: public TransformedContainerPair<VectorRef1, VectorRef2, Operation>,
public GenericVector< LazyVector2<VectorRef1,VectorRef2,Operation>,
typename object_traits<typename TransformedContainerPair<VectorRef1,VectorRef2,Operation>::value_type>::persistent_type > {
typedef TransformedContainerPair<VectorRef1, VectorRef2, Operation> _super;
protected:
int dim(True) const { return get_dim(this->get_container2()); }
int dim(False) const { return get_dim(this->get_container1()); }
public:
LazyVector2(typename _super::first_arg_type src1_arg, typename _super::second_arg_type src2_arg, const Operation& op_arg=Operation())
: _super(src1_arg, src2_arg, op_arg) {}
int dim() const
{
return dim(bool2type< check_container_ref_feature<VectorRef1,unlimited>::value >());
}
};
template <typename VectorRef1, typename VectorRef2, typename Operation>
struct spec_object_traits< LazyVector2<VectorRef1, VectorRef2, Operation> >
: spec_object_traits<is_container> {
static const bool is_lazy=true, is_temporary=true, is_always_const=true;
};
template <typename VectorRef1, typename VectorRef2, typename Operation, typename Feature>
struct check_container_feature<LazyVector2<VectorRef1, VectorRef2, Operation>, Feature>
: check_container_feature<TransformedContainerPair<VectorRef1, VectorRef2, Operation>, Feature> {};
/// explicit conversion of vector elements to another type
template <typename TargetType, typename Vector> inline
const Vector&
convert_to(const GenericVector<Vector, TargetType>& v)
{
return v.top();
}
template <typename TargetType, typename Vector, typename E> inline
const LazyVector1<const Vector&, conv_by_cast<E, TargetType> >
convert_to(const GenericVector<Vector, E>& v,
typename enable_if<void**, (convertible_to<E, TargetType>::value && !identical<E, TargetType>::value)>::type=0)
{
return v.top();
}
template <typename TargetType, typename Vector, typename E> inline
const LazyVector1<const Vector&, conv<E, TargetType> >
convert_to(const GenericVector<Vector, E>& v,
typename enable_if<void**, explicitly_convertible_to<E, TargetType>::value>::type=0)
{
return v.top();
}
template <typename Vector, typename Operation> inline
const LazyVector1<const Vector&, Operation>
apply_operation(const GenericVector<Vector>& v, const Operation& op)
{
return LazyVector1<const Vector&, Operation>(v.top(), op);
}
/* --------------------------------------------
* VectorTensorProduct
* lazy evaluation of a vector tensor product
* -------------------------------------------- */
template <typename VectorRef1, typename VectorRef2, typename Operation=BuildBinary<operations::mul> >
class VectorTensorProduct
: public ContainerProduct<VectorRef1, VectorRef2, Operation>,
public GenericVector< VectorTensorProduct<VectorRef1,VectorRef2,Operation>,
typename object_traits<typename ContainerProduct<VectorRef1, VectorRef2, Operation>::value_type>::persistent_type > {
typedef ContainerProduct<VectorRef1, VectorRef2, Operation> _super;
public:
VectorTensorProduct(typename _super::first_arg_type src1_arg, typename _super::second_arg_type src2_arg,
const Operation& op_arg=Operation())
: _super(src1_arg, src2_arg, op_arg) {}
using _super::dim;
};
template <typename VectorRef1, typename VectorRef2, typename Operation>
struct spec_object_traits< VectorTensorProduct<VectorRef1,VectorRef2,Operation> >
: spec_object_traits<is_container> {
static const bool is_lazy=true;
};
template <typename VectorRef1, typename VectorRef2, typename Operation, typename Feature>
struct check_container_feature<VectorTensorProduct<VectorRef1,VectorRef2,Operation>, Feature>
: check_container_feature<ContainerProduct<VectorRef1, VectorRef2, Operation>, Feature> {};
/* -------------
* VectorChain
* ------------- */
template <typename VectorRef1, typename VectorRef2>
class VectorChain
: public ContainerChain<VectorRef1, VectorRef2>,
public GenericVector< VectorChain<VectorRef1,VectorRef2>,
typename identical<typename deref<VectorRef1>::type::element_type,
typename deref<VectorRef2>::type::element_type>::type > {
typedef ContainerChain<VectorRef1, VectorRef2> _super;
public:
VectorChain(typename _super::first_arg_type src1_arg, typename _super::second_arg_type src2_arg)
: _super(src1_arg,src2_arg) {}
VectorChain& operator= (const VectorChain& other) { return VectorChain::generic_type::operator=(other); }
using VectorChain::generic_type::operator=;
using _super::dim;
};
template <typename VectorRef1, typename VectorRef2>
struct spec_object_traits< VectorChain<VectorRef1, VectorRef2> >
: spec_object_traits< ContainerChain<VectorRef1, VectorRef2> > {};
template <typename VectorRef1, typename VectorRef2, typename Feature>
struct check_container_feature< VectorChain<VectorRef1, VectorRef2>, Feature>
: check_container_feature< ContainerChain<VectorRef1, VectorRef2>, Feature> {};
/* ---------------------
* SingleElementVector
* --------------------- */
template <typename E>
class SingleElementVector
: public single_value_container<E>,
public GenericVector<SingleElementVector<E>, typename deref<E>::type> {
typedef single_value_container<E> _super;
public:
SingleElementVector(typename _super::arg_type arg)
: _super(arg) {}
using SingleElementVector::generic_type::operator=;
};
template <typename E>
struct spec_object_traits< SingleElementVector<E> > : spec_object_traits< single_value_container<E> > {};
template <typename E>
class SingleElementSparseVector
: public single_value_container<E, true>,
public GenericVector<SingleElementSparseVector<E>, typename deref<E>::type> {
typedef single_value_container<E, true> _super;
public:
SingleElementSparseVector() {}
SingleElementSparseVector(typename _super::arg_type arg)
: _super(arg) {}
using _super::dim;
};
template <typename E>
struct spec_object_traits< SingleElementSparseVector<E> > : spec_object_traits< single_value_container<E, true> > {
static const bool is_always_const=true;
};
template <typename E>
struct check_container_feature<SingleElementSparseVector<E>, pure_sparse> : True {};
template <typename ElementRef, typename IndexRef>
struct SingleElementSparseVector_factory {
typedef ElementRef first_argument_type;
typedef int second_argument_type;
typedef SingleElementSparseVector<ElementRef> result_type;
result_type operator() (typename function_argument<ElementRef>::type x, int) const
{
return result_type(x);
}
// can never happen, but must be defined
template <typename Iterator2>
result_type operator() (operations::partial_left, typename function_argument<ElementRef>::type x, const Iterator2&) const
{
return result_type(x);
}
template <typename Iterator1>
result_type operator() (operations::partial_right, const Iterator1&, int) const
{
return result_type();
}
};
template <typename E> inline
SingleElementVector<E&>
scalar2vector(E& x)
{
return x;
}
template <typename E> inline
const SingleElementVector<const E&>
scalar2vector(const E& x)
{
return x;
}
template <typename E> inline
const SingleElementSparseVector<const E&>
scalar2sparse_vector(const E& x)
{
if (!is_zero(x))
return x;
return SingleElementSparseVector<const E&>();
}
/* -------------------
* SameElementVector
* ------------------- */
template <typename ElemRef>
class SameElementVector
: public repeated_value_container<ElemRef>,
public GenericVector<SameElementVector<ElemRef>,
typename object_traits<typename deref<ElemRef>::type>::persistent_type> {
typedef repeated_value_container<ElemRef> _super;
public:
SameElementVector(typename _super::arg_type value_arg, int dim_arg)
: _super(value_arg, dim_arg) {}
using _super::dim;
using _super::stretch_dim;
};
template <typename ElemRef>
struct spec_object_traits< SameElementVector<ElemRef> >
: spec_object_traits<is_container> {
static const bool is_temporary=true, is_always_const=true;
};
/// Create a vector with all entries equal to the given element x.
template <typename E> inline
const SameElementVector<const E&>
same_element_vector(const E& x, int dim=0)
{
return SameElementVector<const E&>(x, dim);
}
/// Create a vector with all entries equal to 1.
template <typename E> inline
const SameElementVector<const E&>
ones_vector(int dim=0)
{
return SameElementVector<const E&>(one_value<E>(), dim);
}
/// Create a vector with all entries equal to 0.
template <typename E> inline
const SameElementVector<const E&>
zero_vector(int dim=0)
{
return SameElementVector<const E&>(zero_value<E>(), dim);
}
template <typename ElemRef, bool _inverse=false>
struct apparent_data_accessor {
typedef void argument_type;
typedef typename attrib<ElemRef>::plus_const_ref result_type;
apparent_data_accessor() {}
apparent_data_accessor(const alias<ElemRef>& arg) : _data(arg) {}
template <typename Iterator>
result_type operator() (const Iterator&) const
{
return *_data;
}
// these methods are for construct_dense
typedef void first_argument_type;
typedef void second_argument_type;
template <typename Iterator1, typename Iterator2>
result_type operator() (const Iterator1&, const Iterator2&) const
{
if (_inverse) return zero_value<typename deref<ElemRef>::type>();
return *_data;
}
template <typename Iterator1, typename Iterator2>
result_type operator() (operations::partial_left, const Iterator1&, const Iterator2&) const
{
if (_inverse) return zero_value<typename deref<ElemRef>::type>();
return *_data;
}
template <typename Iterator1, typename Iterator2>
result_type operator() (operations::partial_right, const Iterator1&, const Iterator2&) const
{
if (_inverse) return *_data;
return zero_value<typename deref<ElemRef>::type>();
}
protected:
alias<ElemRef> _data;
};
template <typename SetRef, typename ElemRef>
class SameElementSparseVector
: public modified_container_impl< SameElementSparseVector<SetRef,ElemRef>,
list( Container< typename attrib<typename Set_with_dim_helper<SetRef>::container>::plus_const >,
Operation< pair<apparent_data_accessor<ElemRef, complement_helper<SetRef>::value>,
operations::identity<int> > > ) >,
public GenericVector< SameElementSparseVector<SetRef,ElemRef>,
typename object_traits<typename deref<ElemRef>::type>::persistent_type > {
typedef modified_container_impl<SameElementSparseVector> _super;
protected:
typedef Set_with_dim_helper<SetRef> helper;
typename helper::alias_type set;
alias<ElemRef> apparent_elem;
public:
typedef typename least_derived<cons< bidirectional_iterator_tag, typename container_traits<SetRef>::category> >::type container_category;
typedef typename helper::alias_type::arg_type first_arg_type;
typedef typename alias<ElemRef>::arg_type second_arg_type;
SameElementSparseVector(first_arg_type set_arg, second_arg_type data_arg)
: set(helper::create(set_arg,-1)), apparent_elem(data_arg) {}
SameElementSparseVector(first_arg_type set_arg, second_arg_type data_arg, int dim_arg)
: set(helper::create(set_arg,dim_arg)), apparent_elem(data_arg) {}
const typename _super::container& get_container() const
{
return helper::deref(set);
}
typename _super::operation get_operation() const
{
return typename _super::operation(apparent_elem, operations::identity<int>());
}
typename _super::const_iterator find(int i) const
{
return typename _super::const_iterator(get_container().find(i), get_operation());
}
typename _super::const_reference operator[] (int i) const
{
if (i<0 || i>=_super::dim())
throw std::runtime_error("same_element_sparse_vector - index out of range");
if (get_container().contains(i))
return *apparent_elem;
return zero_value<typename deref<ElemRef>::type>();
}
using _super::dim;
};
template <typename SetRef, typename ElemRef>
struct spec_object_traits< SameElementSparseVector<SetRef,ElemRef> >
: spec_object_traits<is_container> {
static const bool is_temporary=true, is_always_const=true;
};
template <typename SetRef, typename ElemRef>
struct check_container_feature<SameElementSparseVector<SetRef,ElemRef>, pure_sparse> : True {};
template <typename E, typename Set> inline
const SameElementSparseVector<const typename Unwary<Set>::type&, E>
same_element_sparse_vector(const GenericSet<Set,int>& s, int dim)
{
if (POLYMAKE_DEBUG || !Unwary<Set>::value) {
if (!set_within_range(s.top(),dim))
throw std::runtime_error("same_element_sparse_vector - dimension mismatch");
}
return SameElementSparseVector<const typename Unwary<Set>::type&, E>(s.top(), one_value<E>(), dim);
}
template <typename E, typename Set> inline
const SameElementSparseVector<const typename Unwary<Set>::type&, const E&>
same_element_sparse_vector(const GenericSet<Set,int>& s, const E& x, int dim)
{
if (POLYMAKE_DEBUG || !Unwary<Set>::value) {
if (!set_within_range(s.top(),dim))
throw std::runtime_error("same_element_sparse_vector - dimension mismatch");
}
return SameElementSparseVector<const typename Unwary<Set>::type&, const E&>(s.top(), x, dim);
}
template <typename E, typename Set> inline
const SameElementSparseVector<const Complement<Set>&, E>
same_element_sparse_vector(const Complement<Set,int>& s, int dim)
{
return SameElementSparseVector<const Complement<Set>&, E>(s, one_value<E>(), dim);
}
template <typename E, typename Set> inline
const SameElementSparseVector<const Complement<Set>&, const E&>
same_element_sparse_vector(const Complement<Set,int>& s, const E& x, int dim)
{
return SameElementSparseVector<const Complement<Set>&, const E&>(s, x, dim);
}
template <typename E, typename Set> inline
typename enable_if<const SameElementSparseVector<const Set&, E>, Set_with_dim_helper<Set>::value>::type
same_element_sparse_vector(const GenericSet<Set,int>& s)
{
return SameElementSparseVector<const Set&, E>(s.top(), one_value<E>());
}
/// Create a SparseVector with all entries equal to the given element x
/// at the coordinates defined in the GenericSet s.
template <typename E, typename Set> inline
typename enable_if<const SameElementSparseVector<const Set&, const E&>, Set_with_dim_helper<Set>::value>::type
same_element_sparse_vector(const GenericSet<Set,int>& s, const E& x)
{
return SameElementSparseVector<const Set&, const E&>(s.top(), x);
}
template <typename E, typename Set> inline
typename enable_if<const SameElementSparseVector<const Complement<Set>&, E>, Set_with_dim_helper<Set>::value>::type
same_element_sparse_vector(const Complement<Set,int>& s)
{
return SameElementSparseVector<const Complement<Set>&, E>(s, one_value<E>());
}
template <typename E, typename Set> inline
typename enable_if<const SameElementSparseVector<const Complement<Set>&, const E&>, Set_with_dim_helper<Set>::value>::type
same_element_sparse_vector(const Complement<Set,int>& s, const E& x)
{
return SameElementSparseVector<const Complement<Set>&, const E&>(s, x);
}
/* kind = 1: constructs SameElementSparseVector<sequence> of full size or empty
* kind = 2: always constructs SameElementSparseVector< SingleElementSet<int> > aka unit vector
* kind = 3: constructs SameElementSparseVector<sequence> with one element or empty
*/
template <int kind, typename ElemRef=void>
class SameElementSparseVector_factory {
protected:
int dim;
public:
typedef int first_argument_type;
typedef ElemRef second_argument_type;
typedef SameElementSparseVector<typename if_else<kind==2, SingleElementSet<int>, sequence>::type, ElemRef>
result_type;
SameElementSparseVector_factory(int dim_arg=0) : dim(dim_arg) {}
result_type operator() (first_argument_type pos,
typename function_argument<ElemRef>::type elem) const
{
return result_type(index_set(pos,int2type<kind>()), elem, dim);
}
template <typename Iterator2>
result_type operator() (operations::partial_left, int pos, const Iterator2&) const
{
return result_type(sequence(pos,0), zero_value<typename deref<ElemRef>::type>(), dim);
}
// can never happen, but must be defined
template <typename Iterator1>
result_type operator() (operations::partial_right, const Iterator1&, typename function_argument<ElemRef>::type elem) const
{
return result_type(sequence(0,0), elem, dim);
}
protected:
sequence index_set(int, int2type<1>) const
{
return sequence(0,dim);
}
int index_set(int pos, int2type<2>) const
{
return pos;
}
sequence index_set(int pos, int2type<3>) const
{
return sequence(pos,1);
}
};
template <int kind>
class SameElementSparseVector_factory<kind, void> : public operations::incomplete {
protected:
int _dim;
public:
SameElementSparseVector_factory(int dim_arg=0) : _dim(dim_arg) {}
int dim() const { return _dim; }
};
template <int kind, typename Iterator1, typename Iterator2, typename Reference1, typename Reference2>
struct binary_op_builder< SameElementSparseVector_factory<kind,void>, Iterator1, Iterator2, Reference1, Reference2 > {
typedef SameElementSparseVector_factory<kind,Reference2> operation;
static operation create(const SameElementSparseVector_factory<kind,void>& op) { return operation(op.dim()); }
};
/* ------------
* UnitVector
* ------------ */
template <typename E> inline
const SameElementSparseVector<SingleElementSet<int>, const E&>
unit_vector(int dim, int i, const E& x)
{
if (POLYMAKE_DEBUG) {
if (i<0 || i>=dim)
throw std::runtime_error("unit_vector - index out of range");
}
return SameElementSparseVector<SingleElementSet<int>, const E&>(i,x,dim);
}
template <typename E> inline
const SameElementSparseVector<SingleElementSet<int>, E>
unit_vector(int dim, int i)
{
if (POLYMAKE_DEBUG) {
if (i<0 || i>=dim)
throw std::runtime_error("unit_vector - index out of range");
}
return SameElementSparseVector<SingleElementSet<int>, E>(i,one_value<E>(),dim);
}
/* ----------------
* ExpandedVector
* ---------------- */
template <typename VectorRef>
class ExpandedVector
: public TransformedContainer<masquerade_add_features<VectorRef, sparse_compatible>,
pair<nothing, operations::fix2<int, operations::composed12< BuildUnaryIt<operations::index2element>, void, BuildBinary<operations::add> > > > >,
public GenericVector< ExpandedVector<VectorRef>, typename deref<VectorRef>::type::element_type > {
typedef TransformedContainer<masquerade_add_features<VectorRef, sparse_compatible>,
pair<nothing, operations::fix2<int, operations::composed12< BuildUnaryIt<operations::index2element>, void, BuildBinary<operations::add> > > > >
_super;
int _dim;
public:
ExpandedVector(typename _super::arg_type src_arg, int offset, int dim_arg)
: _super(src_arg, offset), _dim(dim_arg) {}
int dim() const { return _dim; }
};
template <typename VectorRef>
struct spec_object_traits< ExpandedVector<VectorRef> > :
spec_object_traits<is_container> {
static const bool is_temporary=true, is_always_const=true;
};
template <typename VectorRef>
struct check_container_feature<ExpandedVector<VectorRef>, sparse> : True {};
template <typename VectorRef>
struct check_container_feature<ExpandedVector<VectorRef>, pure_sparse>
: check_container_ref_feature<VectorRef, pure_sparse> {};
template <typename VectorRef=void>
class ExpandedVector_factory {
protected:
int offset, dim;
public:
typedef VectorRef argument_type;
typedef ExpandedVector<VectorRef> vector_type;
typedef const vector_type result_type;
ExpandedVector_factory(int offset_arg=0, int dim_arg=0)
: offset(offset_arg), dim(dim_arg) {}
template <typename Ref2>
ExpandedVector_factory(const ExpandedVector_factory<Ref2>& f)
: offset(f.offset), dim(f.dim) {}
result_type operator() (typename function_argument<VectorRef>::type vec) const
{
return vector_type(vec,offset,dim);
}
template <typename> friend class ExpandedVector_factory;
};
template <>
class ExpandedVector_factory<void> : public operations::incomplete {
protected:
int offset, dim;
public:
ExpandedVector_factory(int offset_arg=0, int dim_arg=0)
: offset(offset_arg), dim(dim_arg) {}
template <typename> friend class ExpandedVector_factory;
};
template <typename Iterator, typename Reference>
struct unary_op_builder< ExpandedVector_factory<void>, Iterator, Reference > {
typedef ExpandedVector_factory<Reference> operation;
template <typename Ref2>
static operation create(const ExpandedVector_factory<Ref2>& f) { return f; }
};
/* ---------------------------------------
* functor objects for vector operations
* --------------------------------------- */
namespace operations {
template <typename OpRef>
struct neg_impl<OpRef, is_vector> {
typedef OpRef argument_type;
typedef LazyVector1<typename attrib<typename Unwary<OpRef>::type>::plus_const, BuildUnary<neg> > result_type;
result_type operator() (typename function_argument<OpRef>::const_type x) const
{
return result_type(unwary(x));
}
void assign(typename lvalue_arg<OpRef>::type x) const
{
x.negate();
}
};
template <typename LeftRef, typename RightRef>
struct add_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef LazyVector2<typename attrib<typename Unwary<LeftRef>::type>::plus_const,
typename attrib<typename Unwary<RightRef>::type>::plus_const,
BuildBinary<add> >
result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
if (POLYMAKE_DEBUG || !Unwary<LeftRef>::value || !Unwary<RightRef>::value) {
if (l.dim() != r.dim())
throw std::runtime_error("operator+(GenericVector,GenericVector) - dimension mismatch");
}
return result_type(unwary(l), unwary(r));
}
template <typename Iterator2>
typename function_argument<LeftRef>::const_type
operator() (partial_left, typename function_argument<LeftRef>::const_type l, const Iterator2&) const
{
return l;
}
template <typename Iterator1>
typename function_argument<RightRef>::const_type
operator() (partial_right, const Iterator1&, typename function_argument<RightRef>::const_type r) const
{
return r;
}
void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
{
l+=r;
}
};
template <typename LeftRef, typename RightRef>
struct sub_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef LazyVector2<typename attrib<typename Unwary<LeftRef>::type>::plus_const,
typename attrib<typename Unwary<RightRef>::type>::plus_const,
BuildBinary<sub> >
result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
if (POLYMAKE_DEBUG || !Unwary<LeftRef>::value || !Unwary<RightRef>::value) {
if (l.dim() != r.dim())
throw std::runtime_error("operator-(GenericVector,GenericVector) - dimension mismatch");
}
return result_type(unwary(l), unwary(r));
}
template <typename Iterator2>
typename function_argument<LeftRef>::const_type
operator() (partial_left, typename function_argument<LeftRef>::const_type l, const Iterator2&) const
{
return l;
}
template <typename Iterator1>
typename neg<RightRef>::result_type
operator() (partial_right, const Iterator1&, typename function_argument<RightRef>::const_type r) const
{
neg<RightRef> n;
return n(r);
}
void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
{
l-=r;
}
};
template <typename LeftRef, typename RightRef>
struct mul_impl<LeftRef, RightRef, cons<is_vector, is_scalar> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef LazyVector2<typename attrib<typename Unwary<LeftRef>::type>::plus_const,
constant_value_container<typename Diligent<typename Unwary<RightRef>::type>::type>,
BuildBinary<mul> >
result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const {
return result_type(unwary(l), diligent(unwary(r)));
}
void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
{
l*=r;
}
};
template <typename LeftRef, typename RightRef>
struct mul_impl<LeftRef, RightRef, cons<is_scalar, is_vector> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef LazyVector2<constant_value_container<typename Diligent<typename Unwary<LeftRef>::type>::type>,
typename attrib<typename Unwary<RightRef>::type>::plus_const,
BuildBinary<mul> >
result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
return result_type(diligent(unwary(l)), unwary(r));
}
};
template <typename LeftRef, typename RightRef>
struct mul_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef typename add<typename deref<LeftRef>::type::value_type,
typename deref<RightRef>::type::value_type>::result_type
result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
if (POLYMAKE_DEBUG || !Unwary<LeftRef>::value || !Unwary<RightRef>::value) {
if (l.dim() != r.dim())
throw std::runtime_error("operator*(GenericVector,GenericVector) - dimension mismatch");
}
return accumulate(attach_operation(unwary(l), unwary(r), BuildBinary<mul>()), BuildBinary<add>());
}
};
template <typename LeftRef, typename RightRef>
struct tensor_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef VectorTensorProduct<typename attrib<typename Unwary<LeftRef>::type>::plus_const,
typename attrib<typename Unwary<RightRef>::type>::plus_const,
BuildBinary<mul> >
result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
return result_type(unwary(l), unwary(r));
}
};
template <typename LeftRef, typename RightRef>
struct div_impl<LeftRef, RightRef, cons<is_vector, is_scalar> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef LazyVector2<typename attrib<typename Unwary<LeftRef>::type>::plus_const,
constant_value_container<typename Diligent<typename Unwary<RightRef>::type>::type>,
BuildBinary<div> >
result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
return result_type(unwary(l), diligent(unwary(r)));
}
void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
{
l/=r;
}
};
template <typename LeftRef, typename RightRef>
struct divexact_impl<LeftRef, RightRef, cons<is_vector, is_scalar> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef LazyVector2<typename attrib<typename Unwary<LeftRef>::type>::plus_const,
constant_value_container<typename Diligent<typename Unwary<RightRef>::type>::type>,
BuildBinary<divexact> >
result_type;
result_type operator() (typename function_argument<LeftRef>::const_type l,
typename function_argument<RightRef>::const_type r) const
{
return result_type(unwary(l), diligent(unwary(r)));
}
void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
{
l.div_exact(r);
}
};
template <typename OpRef>
struct square_impl<OpRef, is_vector> {
typedef OpRef argument_type;
typedef typename mul_impl<typename Unwary<OpRef>::type, typename Unwary<OpRef>::type, cons<is_vector, is_vector> >::result_type
result_type;
result_type operator() (typename function_argument<OpRef>::const_type x) const
{
return accumulate(attach_operation(unwary(x), BuildUnary<square>()), BuildBinary<add>());
}
};
template <typename LeftRef, typename RightRef>
struct concat_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef VectorChain<typename coherent_const<typename Unwary<LeftRef>::type, typename Unwary<RightRef>::type>::first_type,
typename coherent_const<typename Unwary<LeftRef>::type, typename Unwary<RightRef>::type>::second_type>
result_type;
result_type operator() (typename function_argument<LeftRef>::type l,
typename function_argument<RightRef>::type r) const
{
return result_type(unwary(l), unwary(r));
}
void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
{
l|=r;
}
};
template <typename LeftRef, typename RightRef>
struct concat_impl<LeftRef, RightRef, cons<is_vector, is_scalar> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
// provisions for the type-heterogeneous case, where the scalar value needs to be converted first
typedef typename deref<LeftRef>::type::element_type element_type;
typedef typename deref<typename Unwary<RightRef>::type>::type right_src_type;
static const bool homogeneous=identical<right_src_type, element_type>::value;
typedef SingleElementVector<typename if_else<homogeneous, typename Unwary<RightRef>::type, element_type>::type> Right;
typedef VectorChain<typename coherent_const<typename Unwary<LeftRef>::type, Right>::first_type,
typename coherent_const<typename Unwary<LeftRef>::type, Right>::second_type>
result_type;
result_type operator() (typename function_argument<LeftRef>::type l,
typename function_argument<RightRef>::type r) const
{
return result_type(unwary(l), convert_to<element_type>(unwary(r)));
}
void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
{
l|=r;
}
};
template <typename LeftRef, typename RightRef>
struct concat_impl<LeftRef, RightRef, cons<is_scalar, is_vector> > {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
// provisions for the type-heterogeneous case, where the scalar value needs to be converted first
typedef typename deref<RightRef>::type::element_type element_type;
typedef typename deref<typename Unwary<LeftRef>::type>::type left_src_type;
static const bool homogeneous=identical<left_src_type, element_type>::value;
typedef SingleElementVector<typename if_else<homogeneous, typename Unwary<LeftRef>::type, element_type>::type> Left;
typedef VectorChain<typename coherent_const<Left, typename Unwary<RightRef>::type>::first_type,
typename coherent_const<Left, typename Unwary<RightRef>::type>::second_type>
result_type;
result_type operator() (typename function_argument<LeftRef>::type l,
typename function_argument<RightRef>::type r) const
{
return result_type(convert_to<element_type>(unwary(l)), unwary(r));
}
};
template <typename LeftRef, typename RightRef>
struct bitwise_or_impl<LeftRef, RightRef, cons<is_vector, is_vector> >
: concat_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {};
template <typename LeftRef, typename RightRef>
struct bitwise_or_impl<LeftRef, RightRef, cons<is_vector, is_scalar> >
: concat_impl<LeftRef, RightRef, cons<is_vector, is_scalar> > {};
template <typename LeftRef, typename RightRef>
struct bitwise_or_impl<LeftRef, RightRef, cons<is_scalar, is_vector> >
: concat_impl<LeftRef, RightRef, cons<is_scalar, is_vector> > {};
} // end namespace operations
namespace operators {
template <typename Vector1, typename Vector2> inline
typename operations::add_impl<const Vector1&, const Vector2&>::result_type
operator+ (const GenericVector<Vector1>& l, const GenericVector<Vector2>& r)
{
operations::add_impl<const Vector1&, const Vector2&> op;
return op(concrete(l), concrete(r));
}
template <typename Vector1, typename Vector2> inline
typename operations::sub_impl<const Vector1&, const Vector2&>::result_type
operator- (const GenericVector<Vector1>& l, const GenericVector<Vector2>& r)
{
operations::sub_impl<const Vector1&, const Vector2&> op;
return op(concrete(l), concrete(r));
}
template <typename Vector1, typename Vector2> inline
bool operator== (const GenericVector<Vector1>& l, const GenericVector<Vector2>& r)
{
if (l.dim() != r.dim()) return false;
operations::eq<const typename Unwary<Vector1>::type&, const typename Unwary<Vector2>::type&> op;
return op(l.top(), r.top());
}
template <typename Vector1, typename Vector2> inline
typename enable_if<bool, (is_ordered<typename Vector1::element_type>::value && is_ordered<typename Vector2::element_type>::value)>::type
operator< (const GenericVector<Vector1>& l, const GenericVector<Vector2>& r)
{
if (POLYMAKE_DEBUG || !Unwary<Vector1>::value || !Unwary<Vector2>::value) {
if (l.dim() != r.dim())
throw std::runtime_error("operator<(GenericVector,GenericVector) - dimension mismatch");
}
operations::lt<const typename Unwary<Vector1>::type&, const typename Unwary<Vector2>::type&> op;
return op(l.top(), r.top());
}
} // end namespace operators
template <typename Vector, typename Right> inline
typename operations::divexact_impl<const Vector&, const Right&>::result_type
div_exact(const GenericVector<Vector>& l, const Right& r)
{
operations::divexact_impl<const Vector&, const Right&> op;
return op(concrete(l), r);
}
template <typename Vector>
struct hash_func<Vector, is_vector> {
protected:
hash_func<typename Vector::value_type> hash_elem;
public:
size_t operator() (const Vector& v) const
{
size_t h=1;
for (typename ensure_features<Vector, cons<end_sensitive,sparse_compatible> >::const_iterator e=ensure(v, (cons<end_sensitive, sparse_compatible>*)0).begin(); !e.at_end(); ++e)
h += (hash_elem(*e) * (e.index()+1));
return h;
}
};
template<typename Vector>
typename enable_if<Indices<SelectedSubset<const GenericVector<Vector>&, BuildUnary<operations::non_zero> > >, !Vector::is_sparse>::type
indices(const GenericVector<Vector>& v)
{
return indices(attach_selector(v, BuildUnary<operations::non_zero>()));
}
} // end namespace pm
namespace polymake {
using pm::GenericVector;
using pm::FixedVector;
using pm::scalar2vector;
using pm::array2vector;
using pm::same_element_vector;
using pm::same_element_sparse_vector;
using pm::convert_to;
using pm::ones_vector;
using pm::zero_vector;
using pm::unit_vector;
}
namespace std {
template <typename Vector1, typename Vector2, typename E> inline
void swap(pm::GenericVector<Vector1,E>& v1, pm::GenericVector<Vector2,E>& v2)
{
v1.top().swap(v2.top());
}
// due to silly overloading rules
template <typename VectorRef1, typename VectorRef2> inline
void swap(pm::VectorChain<VectorRef1,VectorRef2>& v1, pm::VectorChain<VectorRef1,VectorRef2>& v2)
{
v1.swap(v2);
}
template <typename E, int _size> inline
void swap(pm::FixedVector<E,_size>& v1, pm::FixedVector<E,_size>& v2)
{
v1.swap(v2);
}
}
#endif // POLYMAKE_GENERIC_VECTOR_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|