This file is indexed.

/usr/include/polymake/next/Array.h is in polymake 3.0r2-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/* Copyright (c) 1997-2015
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

/** @file Array.h
    @brief Implementation of pm::Array class
*/

#ifndef POLYMAKE_ARRAY_H
#define POLYMAKE_ARRAY_H

#include "polymake/internal/shared_object.h"
#include "polymake/internal/converters.h"
#include "polymake/GenericIO.h"
#include "polymake/internal/comparators.h"
#include "polymake/internal/Array.h"

#include <stdexcept>
#include <limits>

namespace pm {

/** @class Array
    @brief Container class with constant time random access.

    Offers practically the same as @c std::vector.  The only significant
    differences are that the data array is attached via a smart pointer with
    @ref refcounting "reference counting", and the set of operations changing
    the size of the array is reduced to the minimum.

    Array inplements STL's "Random Access Container" interface.  The element
    index in the random access method should lie in the valid range, the array
    does not grow implicitly.
*/

template <typename E, typename SharedParams>
class Array : public operators::base {
protected:
   /// data array
   shared_array<E, typename concat_list<SharedParams, AliasHandler<shared_alias_handler> >::type> data;

   friend Array& make_mutable_alias(Array& alias, Array& owner)
   {
      alias.data.make_mutable_alias(owner.data);
      return alias;
   }
public:
   /// element type
   typedef E value_type;
   /// element reference type
   typedef E& reference;
   /// ... constant version
   typedef const E& const_reference;

   /// Create an empty array.
   Array() {}

#if POLYMAKE_DEBUG
   ~Array() { POLYMAKE_DEBUG_METHOD(Array,dump); }
   void dump(False) const { cerr << "elements are not printable" << std::flush; }
   void dump(True) const { cerr << *this << std::flush; }
   void dump() const { dump(bool2type<is_printable<E>::value>()); }
#endif

   /// Create an array with @a n elements, initialized with the default constructor.
   explicit Array(int n) : data(n) {}

   /// Create an array with @a n elements, initialized with the same value.
   Array(int n, const E& init) : data(n, constant(init).begin()) {}

   /// Create an array with @a n, initialized from a data sequence.
   template <typename Iterator>
   Array(int n, Iterator src,
         typename construct_matching_iterator<Iterator, E>::enabled=0) :
      data(n, construct_matching_iterator<Iterator, E>()(src)) {}

   template <typename Iterator>
   Array(Iterator first, Iterator last,
         typename construct_matching_iterator<Iterator, E>::enabled=0) :
      data(std::distance(first, last), construct_matching_iterator<Iterator, E>()(first)) {}

   /// Create an array with @a n elements, initialized from a built-in array.
   template <typename E2, size_t n>
   explicit Array(const E2 (&a)[n],
                  typename enable_if<void**, convertible_to<E2, E>::value>::type=0) :
      data(n, a+0) {}

   /// ... with explicit element conversion.
   template <typename E2, size_t n>
   explicit Array(const E2 (&a)[n],
                  typename enable_if<void**, explicitly_convertible_to<E2, E>::value>::type=0) :
      data(n, attach_converter<E>(array2container(a)).begin()) {}

   template <typename E2, size_t m, size_t n>
   explicit Array(const E2 (&a)[m][n],
                  typename enable_if<void**, isomorphic_to_container_of<E, E2, allow_conversion>::value>::type=0) :
      data(m, a+0) {}

   template <typename Container>
   Array(const Container& src,
         typename enable_if<void**, isomorphic_to_container_of<Container, E, allow_conversion>::value>::type=0)
      : data(src.size(), ensure(src, (dense*)0).begin()) {}

   /// number of elements
   int size() const { return data.size(); }

   /// true if empty
   bool empty() const { return size()==0; }

   /// truncate to zero size
   void clear() { data.clear(); }

   /// If @a n is less than the current array length, delete the trailing
   /// elements. If greater, add new elements initialized with the default
   /// constructor resp. the copies of the given value @a x.
   ///
   /// Unlike @c std::vector, @c Array never allocates extra stock
   /// storage. Each resize operation causes the data area reallocation.
   void resize(int n) { data.resize(n); }

   /// Same as above, with explicit element construction.
   void resize(int n, const E& x)
   {
      data.append(n-size(), constant(x).begin());
   }

   void assign(int n, const E& x)
   {
      data.assign(n, constant(x).begin());
   }

   /// Keep the old elements, add @a n new elements to the tail, assign them values from the data sequence.
   template <typename Iterator>
   void append(int n, Iterator src)
   {
      data.append(n, src);
   }

   /// Assign @a x to all elements.
   void fill(const E& x)
   {
      data.assign(size(), constant(x).begin());
   }

   /// Resize to @a n elements, assign values from the built-in array.
   template <int n>
   Array& operator= (const E (&a)[n])
   {
      data.assign(n,a+0);
      return *this;
   }

   /// Swap the contents of two arrays in a most efficient way.
   void swap(Array& a) { data.swap(a.data); }

   friend void relocate(Array* from, Array* to)
   {
      relocate(&from->data, &to->data);
   }

   /// random access
   E& operator[] (int i)
   {
      if (POLYMAKE_DEBUG) {
         if (i<0 || i>=size())
            throw std::runtime_error("Array::operator[] - index out of range");
      }
      return (*data)[i];
   }

   /// ... constant version
   const E& operator[] (int i) const
   {
      if (POLYMAKE_DEBUG) {
         if (i<0 || i>=size())
            throw std::runtime_error("Array::operator[] - index out of range");
      }
      return (*data)[i];
   }

   typedef E* iterator;
   typedef const E* const_iterator;

   iterator begin() { return *data; }
   iterator end() { return *data+size(); }
   const_iterator begin() const { return *data; }
   const_iterator end() const { return *data+size(); }

   typedef std::reverse_iterator<iterator> reverse_iterator;
   typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

   reverse_iterator rbegin() { return reverse_iterator(end()); }
   reverse_iterator rend() { return reverse_iterator(begin()); }
   const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
   const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }

   reference front() { return (*data)[0]; }
   const_reference front() const { return (*data)[0]; }
   reference back() { return (*data)[size()-1]; }
   const_reference back() const { return (*data)[size()-1]; }
};

template <typename E>
struct spec_object_traits< Array<E> >
   : spec_object_traits<is_container> {};

   
namespace operators {
      
   /// equality of Array objects
   template <typename E> inline
   bool operator== (const Array<E>& l, const Array<E>& r) {
      if ( r.size() != l.size() ) { return false; }
      operations::eq<const Array<E>&, const Array<E>&> cmp_op;
      return cmp_op(l, r);
   }

}
   
} // end namespace pm

namespace polymake {
using pm::Array;
}

namespace std {
template <typename E> inline
void swap(pm::Array<E>& a1, pm::Array<E>& a2) { a1.swap(a2); }
}

#endif // POLYMAKE_ARRAY_H

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: