This file is indexed.

/usr/lib/python2.7/dist-packages/brial/cnf.py is in python-brial 0.8.5-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from random import Random
from .PyPolyBoRi import (Monomial, BooleSet, Polynomial, if_then_else
    as ite, lp, gauss_on_polys, ll_red_nf_redsb)
from .ll import ll_encode
from .statistics import used_vars_set


class CNFEncoder(object):
    def __init__(self, r, random_seed=16):
        self.random_generator = Random(random_seed)
        self.one_set = r.one().set()
        self.empty_set = r.zero().set()
        self.r = r

    def zero_blocks(self, f):
        """divides the zero set of f into blocks
        >>> from brial import *
        >>> r = declare_ring(["x", "y", "z"], dict())
        >>> e = CNFEncoder(r)
        >>> e.zero_blocks(r.variable(0)*r.variable(1)*r.variable(2))
        [{y: 0}, {z: 0}, {x: 0}]
        """
        f = Polynomial(f)
        variables = f.vars_as_monomial()

        space = variables.divisors()
        variables = list(variables.variables())
        zeros = f.zeros_in(space)
        rest = zeros
        res = list()

        def choose_old(s):
            return next(iter(rest))  # somewhat

            #inefficient compared to polynomials lex_lead
        def choose(s):
            indices = []
            assert not s.empty()
            nav = s.navigation()
            while not nav.constant():
                e = nav.else_branch()
                t = nav.then_branch()
                if e.constant() and not e.terminal_one():
                    indices.append(nav.value())
                    nav = t
                else:
                    if self.random_generator.randint(0, 1):
                        indices.append(nav.value())
                        nav = t

                    else:
                        nav = e
            assert nav.terminal_one()
            res = self.one_set
            for i in reversed(indices):
                res = ite(i, res, self.empty_set)
            return next(iter(res))
        while not rest.empty():
            l = choose(rest)
            l_variables = set(l.variables())

            def get_val(var):
                if var in l_variables:
                    return 1
                return 0
            block_dict = dict([(v, get_val(v)) for v in variables])

            l = l.set()
            self.random_generator.shuffle(variables)
            for v in variables:
                candidate = l.change(v.index())
                if candidate.diff(zeros).empty():
                    l = l.union(candidate)
                    del block_dict[v]
            rest = rest.diff(l)
            res.append(block_dict)
        return res

    def clauses(self, f):
        """
        >>> from brial import *
        >>> r = declare_ring(["x", "y", "z"], dict())
        >>> e = CNFEncoder(r)
        >>> e.clauses(r.variable(0)*r.variable(1)*r.variable(2)) # doctest:+ELLIPSIS
        [{...x: 0...}]
        >>> e.clauses(r.variable(1)+r.variable(0)) # doctest:+ELLIPSIS
        [{...x: 1...}, {...y: 1...}]

        >>> [sorted(c.iteritems()) for c in e.clauses(r.variable(0)*r.variable(1)*r.variable(2))]
        [[(z, 0), (y, 0), (x, 0)]]
        >>> [sorted(c.iteritems()) for c in e.clauses(r.variable(1)+r.variable(0))]
        [[(y, 1), (x, 0)], [(y, 0), (x, 1)]]
        """
        f_plus_one = f + 1
        blocks = self.zero_blocks(f + 1)
        negated_blocks = [dict([(variable, 1 - value) for (variable, value)
            in b.items()]) for b in blocks]
        # we form an expression for a var configuration *not* lying in the
        # block it is evaluated to 0 by f, iff it is not lying in any zero
        # block of f+1
        return negated_blocks

    def polynomial_clauses(self, f):
        """
        >>> from brial import *
        >>> r = declare_ring(["x", "y", "z"], dict())
        >>> e = CNFEncoder(r)
        >>> e.polynomial_clauses(r.variable(0)*r.variable(1)*r.variable(2))
        [x*y*z]
        >>> v = r.variable
        >>> p = v(1)*v(2)+v(2)*v(0)+1
        >>> groebner_basis([p], heuristic = False)==groebner_basis(e.polynomial_clauses(p), heuristic = False)
        True
        """

        def product(l):
            res = l[0]
            for p in l[1:]:
                res = res * p
            # please care about the order of these multiplications for
            # performance
            return res
        return [product([variable + value for (variable, value)
                         in b.items()]) for b in self.clauses(f)]

    def to_dimacs_index(self, v):
        return v.index() + 1

    def dimacs_encode_clause(self, c):
        def get_sign(val):
            if value == 1:
                return 1
            return -1

        items = sorted(c.items(), reverse=True)
        return " ".join(
        [str(v) for v in
            [
            get_sign(value) * self.to_dimacs_index(variable)
            for (variable, value) in items] + [0]])

    def dimacs_encode_polynomial(self, p):
        """
         >>> from brial import *
         >>> d=dict()
         >>> r = declare_ring(["x", "y", "z"], d)
         >>> e = CNFEncoder(r)
         >>> e.dimacs_encode_polynomial(d["x"]+d["y"]+d["z"])
         ['1 2 -3 0', '1 -2 3 0', '-1 -2 -3 0', '-1 2 3 0']
            """
        clauses = self.clauses(p)
        res = []
        for c in clauses:
            res.append(self.dimacs_encode_clause(c))
        return res

    def dimacs_cnf(self, polynomial_system):
        r"""
        >>> from brial import *
        >>> r = declare_ring(["x", "y", "z"], dict())
        >>> e = CNFEncoder(r)
        >>> e.dimacs_cnf([r.variable(0)*r.variable(1)*r.variable(2)])
        'c cnf generated by PolyBoRi\np cnf 3 1\n-1 -2 -3 0'
        >>> e.dimacs_cnf([r.variable(1)+r.variable(0)])
        'c cnf generated by PolyBoRi\np cnf 3 2\n1 -2 0\n-1 2 0'
        >>> e.dimacs_cnf([r.variable(0)*r.variable(1)*r.variable(2), r.variable(1)+r.variable(0)])
        'c cnf generated by PolyBoRi\np cnf 3 3\n-1 -2 -3 0\n-1 2 0\n1 -2 0'
        """
        clauses_list = [c for p in polynomial_system for c in self.
            dimacs_encode_polynomial(p)]
        res = ["c cnf generated by PolyBoRi"]
        r = polynomial_system[0].ring()
        n_variables = r.n_variables()
        res.append("p cnf %s %s" % (n_variables, len(clauses_list)))
        for c in clauses_list:
            res.append(c)
        return "\n".join(res)


class CryptoMiniSatEncoder(CNFEncoder):
    group_counter = 0

    def dimacs_encode_polynomial(self, p):
        r"""
         >>> from brial import *
         >>> d=dict()
         >>> r = declare_ring(["x", "y", "z"], d)
         >>> e = CryptoMiniSatEncoder(r)
         >>> p = d["x"]+d["y"]+d["z"]
         >>> p.deg()
         1
         >>> len(p)
         3
         >>> e.dimacs_encode_polynomial(p)
         ['x1 2 3 0\nc g 1 x + y + z']
         >>> e.dimacs_encode_polynomial(p+1)
         ['x1 2 -3 0\nc g 2 x + y + z + 1']
            """
        if p.deg() != 1 or len(p) <= 1:
            res = super(CryptoMiniSatEncoder, self).dimacs_encode_polynomial(p)
        else:

            if p.has_constant_part():
                invert_last = True
            else:
                invert_last = False
            variables = list(p.vars_as_monomial().variables())
            indices = [self.to_dimacs_index(v) for v in variables]
            if invert_last:
                indices[-1] = -indices[-1]
            indices.append(0)
            res = ["x" + " ".join([str(v) for v in indices])]
        self.group_counter = self.group_counter + 1
        group_comment = "\nc g %s %s" % (self.group_counter, str(p)[:30])
        return [c + group_comment for c in res]

    def dimacs_cnf(self, polynomial_system):
        r"""
            >>> from brial import *
            >>> r = declare_ring(["x", "y", "z"], dict())
            >>> e = CryptoMiniSatEncoder(r)
            >>> e.dimacs_cnf([r.variable(0)*r.variable(1)*r.variable(2)])
            'c cnf generated by PolyBoRi\np cnf 3 1\n-1 -2 -3 0\nc g 1 x*y*z\nc v 1 x\nc v 2 y\nc v 3 z'
            >>> e.dimacs_cnf([r.variable(1)+r.variable(0)])
            'c cnf generated by PolyBoRi\np cnf 3 1\nx1 2 0\nc g 2 x + y\nc v 1 x\nc v 2 y'
            >>> e.dimacs_cnf([r.variable(0)*r.variable(1)*r.variable(2), r.variable(1)+r.variable(0)])
            'c cnf generated by PolyBoRi\np cnf 3 2\n-1 -2 -3 0\nc g 3 x*y*z\nx1 2 0\nc g 4 x + y\nc v 1 x\nc v 2 y\nc v 3 z'
            """
        uv = list(used_vars_set(polynomial_system).variables())
        res = super(CryptoMiniSatEncoder, self).dimacs_cnf(polynomial_system)
        res = res + "\n" + "\n".join(["c v %s %s" % (self.to_dimacs_index(v),
            v) for v in uv])
        return res


def _test():
    import doctest
    doctest.testmod()

if __name__ == "__main__":
    _test()