This file is indexed.

/usr/lib/python2.7/dist-packages/brial/nf.py is in python-brial 0.8.5-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
from __future__ import print_function

from .PyPolyBoRi import *
from .easy_polynomials import (easy_linear_polynomials as
    easy_linear_polynomials_func)
from .statistics import used_vars_set
from random import Random
from warnings import warn
import copy
import sys
from exceptions import NotImplementedError


class GeneratorLimitExceeded(Exception):
    """docstring for GeneratorLimitExceeded"""

    def __init__(self, strat):
        #super(GeneratorLimitExceeded, self).__init__()
        self.strat = strat

#used_polynomials=list()

def pkey(p):
    return (p[0], len(p))
mat_counter = 0


def build_and_print_matrices(v, strat):
    """old solution using PIL, the currently used implementation is done in C++
    and plots the same matrices, as being calculated"""
    treated = BooleSet()
    v = list(v)
    rows = 0
    polys_in_mat = []
    if len(v) == 0:
        return
    while(len(v) > 0):
        rows = rows + 1
        p = v[0]
        v = v[1:]
        #used_polynomials.append(p)
        for m in list(p.terms()):
            m = Monomial(m)
            if not m in BooleSet(treated):
                i = strat.select(m)
                if i >= 0:
                    p2 = strat[i]
                    p2 = p2 * (m // p2.lead())
                    v.append(p2)
        polys_in_mat.append(p)
        treated = treated.union(p.set())
    m2i = dict([(v, k) for (k, v) in enumerate(list(Polynomial(BooleSet(
        treated)).terms()))])
    #print polys_in_mat
    polys_in_mat.sort(key=Polynomial.lead, reverse=True)
    polys_in_mat = [[m2i[t] for t in p.terms()] for p in polys_in_mat]

    global mat_counter
    mat_counter = mat_counter + 1
    from PIL import Image
    from PIL import ImageDraw

    rows = len(polys_in_mat)
    cols = len(m2i)
    #print cols,rows
    im = Image.new("1", (cols, rows), "white")
    #im=Image.new("1",(,10000),"white")
    for i in range(len(polys_in_mat)):
        p = polys_in_mat[i]
        for j in p:
            assert i < rows
            assert j < cols

            im.putpixel((j, i), 0)

    file_name = matrix_prefix + str(mat_counter) + ".png"
    import os
    os.system("rm -f " + file_name)
    im.save(file_name)
    del im

    print("MATRIX_SIZE:", rows, "x", cols)


def multiply_polynomials(l, ring):
    """
    >>> r=Ring(1000)
    >>> x=r.variable
    >>> multiply_polynomials([x(3), x(2)+x(5)*x(6), x(0), x(0)+1], r)
    0
    """
    l = [Polynomial(p) for p in l]

    def sort_key(p):
        return p.navigation().value()
    l = sorted(l, key=sort_key)
    res = Polynomial(ring.one())
    for p in l:
        res = p * res
    return res


def build_and_print_matrices_deg_colored(v, strat):
    """old PIL solution using a different color for each degree"""
    if len(v) == 0:
        return

    treated = BooleSet()
    v = list(v)
    rows = 0
    polys_in_mat = []

    while(len(v) > 0):
        rows = rows + 1
        p = v[0]
        v = v[1:]
        for m in list(p.terms()):
            m = Monomial(m)
            if not m in BooleSet(treated):
                i = strat.select(m)
                if i >= 0:
                    p2 = strat[i]
                    p2 = p2 * (m // p2.lead())
                    v.append(p2)
        polys_in_mat.append(p)
        treated = treated.union(p.set())
    m2i = dict([(v, k) for (k, v) in enumerate(BooleSet(treated))])
    max_deg = max([m.deg() for m in BooleSet(treated)])
    if max_deg == 0:
        max_deg = 1
    i2deg = dict([(m2i[m], m.deg()) for m in BooleSet(treated)])
    polys_in_mat = [[m2i[t] for t in p.terms()] for p in polys_in_mat]
    polys_in_mat.sort(key=pkey)
    global mat_counter
    mat_counter = mat_counter + 1
    from PIL import Image
    from PIL import ImageDraw
    from PIL import ImageColor

    rows = len(polys_in_mat)
    cols = len(m2i)
    im = Image.new("RGB", (cols, rows), "white")
    for i in range(len(polys_in_mat)):
        p = polys_in_mat[i]
        for j in p:
            assert i < rows
            assert j < cols
            im.putpixel((j, i), ImageColor.getrgb("hsl(" + str(270 - (270 *
                i2deg[j]) / max_deg) + ",100%,50%)"))
    file_name = matrix_prefix + str(mat_counter) + ".png"
    import os
    os.system("rm -f file_name")
    im.save(file_name)
    del im

    print("MATRIX_SIZE:", rows, "x", cols)


def high_probability_polynomials_trick(p, strat):
    lead_deg = p.lead_deg()
    if lead_deg <= 4:
        return

    ring = p.ring()
    factor = multiply_polynomials(easy_linear_factors(p), ring)
    p = p / factor

    #again, do it twice, it's cheap
    lead_deg = p.lead_deg()
    if lead_deg <= 3:
        return

    if lead_deg > 9:
        return
    uv = p.vars_as_monomial()

    candidates = []

    if uv.deg() <= 4:
        return

    if not uv.deg() <= lead_deg + 1:
        return

    space = uv.divisors()

    lead = p.lead()
    for v in lead.variables():
        variable_selection = lead // v
        vars_reversed = reversed(list(variable_selection.variables()))
        #it's just a way to loop over the cartesian product
        for assignment in variable_selection.divisors():
            c_p = assignment
            for v in vars_reversed:
                if not assignment.reducible_by(v):
                    c_p = (v + 1) * c_p

            points = (c_p + 1).zeros_in(space)
            if p.zeros_in(points).empty():
                candidates.append(c_p * factor)
        #there many more combinations depending on plugged in values
    for c in candidates:
        strat.add_as_you_wish(c)


def symmGB_F2_python(G, deg_bound=1000000000000, over_deg_bound=0,
    use_faugere=False, use_noro=False, opt_lazy=True, opt_red_tail=True,
    max_growth=2.0, step_factor=1.0, implications=False, prot=False,
    full_prot=False, selection_size=1000, opt_exchange=True,
    opt_allow_recursion=False, ll=False,
    opt_linear_algebra_in_last_block=True, max_generators=None,
    red_tail_deg_growth=True, matrix_prefix='mat',
    modified_linear_algebra=True, draw_matrices=False,
    easy_linear_polynomials=True):
    if use_noro and use_faugere:
        raise ValueError('both use_noro and use_faugere specified')

    def add_to_basis(strat, p):
        if p.is_zero():
            if prot:
                print("-")
        else:
            if prot:
                if full_prot:
                    print(p)
                print("Result: ", "deg:", p.deg(), "lm: ", p.lead(), "el: ", p
                    .elength())
            if easy_linear_polynomials and p.lead_deg() > 2:
                lin = easy_linear_polynomials_func(p)
                for q in lin:
                    strat.add_generator_delayed(q)
            old_len = len(strat)
            strat.add_as_you_wish(p)
            new_len = len(strat)
            if new_len == 1 + old_len:
                high_probability_polynomials_trick(p, strat)


            if prot:
                print("#Generators:", len(strat))

    if (isinstance(G, list)):
        if len(G) == 0:
            return []
        G = [Polynomial(g) for g in G]
        current_ring = G[0].ring()
        strat = GroebnerStrategy(current_ring)
        strat.reduction_strategy.opt_red_tail = opt_red_tail
        strat.opt_lazy = opt_lazy
        strat.opt_exchange = opt_exchange
        strat.opt_allow_recursion = opt_allow_recursion
        strat.enabled_log = prot
        strat.reduction_strategy.opt_ll = ll
        strat.opt_modified_linear_algebra = modified_linear_algebra
        strat.opt_linear_algebra_in_last_block = (
            opt_linear_algebra_in_last_block)
        strat.opt_red_by_reduced = False  # True
        strat.reduction_strategy.opt_red_tail_deg_growth = red_tail_deg_growth

        strat.opt_draw_matrices = draw_matrices
        strat.matrix_prefix = matrix_prefix

        for g in  G:
            if not g.is_zero():
                strat.add_generator_delayed(g)
    else:
        strat = G

    if prot:
        print("added delayed")
    i = 0
    try:
        while strat.npairs() > 0:
            if max_generators and len(strat) > max_generators:
                raise GeneratorLimitExceeded(strat)
            i = i + 1
            if prot:
                print("Current Degree:", strat.top_sugar())
            if (strat.top_sugar() > deg_bound) and (over_deg_bound <= 0):
                return strat
            if (strat.top_sugar() > deg_bound):
                ps = strat.some_spolys_in_next_degree(over_deg_bound)
                over_deg_bound -= len(ps)
            else:
                ps = strat.some_spolys_in_next_degree(selection_size)

            if ps and ps[0].ring().has_degree_order():
                ps = [strat.reduction_strategy.cheap_reductions(p) for p in ps]
                ps = [p for p in ps if not p.is_zero()]
                if len(ps) > 0:
                    min_deg = min((p.deg() for p in ps))
                new_ps = []
                for p in ps:
                    if p.deg() <= min_deg:
                        new_ps.append(p)
                    else:
                        strat.add_generator_delayed(p)
                ps = new_ps

            if prot:
                print("(", strat.npairs(), ")")
            if prot:
                print("start reducing")
                print("Chain Crit. : ", strat.chain_criterions, "VC:", strat.
                    variable_chain_criterions, "EASYP", strat.
                    easy_product_criterions, "EXTP", strat.
                    extended_product_criterions)
                print(len(ps), "spolys added")

            if use_noro or use_faugere:
                v = BoolePolynomialVector()

                for p in ps:
                    if not p.is_zero():
                        v.append(p)
                if use_noro:
                    res = strat.noro_step(v)
                else:
                    res = strat.faugere_step_dense(v)

            else:
                v = BoolePolynomialVector()
                for p in ps:
                    p = Polynomial(
                        mod_mon_set(
                        BooleSet(p.set()), strat.reduction_strategy.monomials))
                    if not p.is_zero():
                        v.append(p)
                if len(v) > 100:
                    res = parallel_reduce(v, strat, int(step_factor * 10),
                        max_growth)
                else:
                    if len(v) > 10:
                        res = parallel_reduce(v, strat, int(step_factor * 30),
                            max_growth)
                    else:
                        res = parallel_reduce(v, strat, int(step_factor * 100
                            ), max_growth)

            if prot:
                print("end reducing")


            if len(res) > 0 and res[0].ring().has_degree_order():
                res_min_deg = min([p.deg() for p in res])
                new_res = []
                for p in res:
                    if p.deg() == res_min_deg:
                        new_res.append(p)
                    else:
                        strat.add_generator_delayed(p)
                res = new_res

            def sort_key(p):
                return p.lead()
            res_cp = sorted(res, key=sort_key)


            for p in  res_cp:
                old_len = len(strat)
                add_to_basis(strat, p)
                if implications and old_len == len(strat) - 1:
                    strat.implications(len(strat) - 1)
                if p.is_one():
                    if prot:
                        print("GB is 1")
                    return strat
                if prot:
                    print("(", strat.npairs(), ")")

            strat.clean_top_by_chain_criterion()
        return strat
    except KeyboardInterrupt:
        #return strat
        raise


def GPS(G, vars_start, vars_end):
    def step(strat, trace, var, val):
        print("plugin: ", var, val)
        print("npairs", strat.npairs())
        strat = GroebnerStrategy(strat)
        print("npairs", strat.npairs())
        strat.add_generator_delayed(Polynomial(Monomial(Variable(var, strat.r)
            ) + val))
        strat = symmGB_F2_python(strat, prot=True, deg_bound=2,
            over_deg_bound=10)
        if var <= vars_start:
            strat = symmGB_F2_python(strat, prot=True, opt_lazy=False,
                redTail=False)
        if strat.containsOne():
            pass
        else:
            if var <= vars_start:
                #bug: may contain Delayed polynomials
                print("!!!!!!! SOLUTION", trace)
                raise Exception
                #yield trace
            else:
                branch(strat, trace + [(var, val)], var - 1)

    def branch(strat, trace, var):
        while(strat.variableHasValue(var)):
            #remember to add value to trace
            var = var - 1
        step(strat, trace, var, 0)
        step(strat, trace, var, 1)
    if G:
        strat = GroebnerStrategy(G[0].ring())
        #strat.add_generator(G[0])
        for g in G[:]:
            strat.add_generator_delayed(g)
        branch(strat, [], vars_end - 1)


def GPS_with_proof_path(G, proof_path, deg_bound, over_deg_bound):
    def step(strat, trace, proof_path, pos, val):
        print(proof_path)
        print("plugin: ", pos, val, proof_path[pos])
        print("npairs", strat.npairs())
        strat = GroebnerStrategy(strat)
        print("npairs", strat.npairs())
        print("npairs", strat.npairs())
        plug_p = Polynomial(proof_path[pos]) + val
        plug_p_lead = plug_p.lead()
        if len(plug_p) == 2 and (plug_p + plug_p_lead).deg() == 0:
            for v in plug_p_lead:
                strat.add_generator_delayed(v + 1)
        else:
            strat.add_generator_delayed(plug_p)
        print("npairs", strat.npairs())
        print("pos:", pos)
        strat = symmGB_F2_python(strat, deg_bound=deg_bound, opt_lazy=False,
            over_deg_bound=over_deg_bound, prot=True)
        print("npairs", strat.npairs())
        pos = pos + 1
        if pos >= len(proof_path):
            print("OVER")
            strat = symmGB_F2_python(strat, prot=True)
        if strat.containsOne():
            pass
        else:
            if pos >= len(proof_path):
                print("npairs", strat.npairs())
                print("minimized:")
                for p in strat.minimalize_and_tail_reduce():
                    print(p)
                #bug: may contain Delayed polynomials
                print("!!!!!!! SOLUTION", trace)
                raise Exception
                #yield trace
            else:
                branch(strat, trace + [(pos, val)], proof_path, pos)

    def branch(strat, trace, proof_path, pos):

        step(strat, trace, proof_path, pos, 0)
        step(strat, trace, proof_path, pos, 1)
    strat = GroebnerStrategy(G[0].ring())
    strat.add_generator(Polynomial(G[0]))
    for g in G[1:]:
        strat.add_generator_delayed(Polynomial(g))
    branch(strat, [], proof_path, 0)


def GPS_with_suggestions(G, deg_bound, over_deg_bound, opt_lazy=True,
    opt_red_tail=True, initial_bb=True):
    def step(strat, trace, var, val):
        print(trace)
        plug_p = val + var
        print("plugin: ", len(trace), plug_p)
        trace = trace + [plug_p]
        strat = GroebnerStrategy(strat)

        strat.add_generator_delayed(plug_p)
        print("npairs", strat.npairs())

        strat = symmGB_F2_python(strat, deg_bound=deg_bound,
            opt_lazy=opt_lazy, over_deg_bound=over_deg_bound, prot=True)

        #pos=pos+1
        if not strat.containsOne():
            branch(strat, trace)

    def branch(strat, trace):
        print("branching")
        index = strat.suggestPluginVariable()

        if index < 0:
            uv = set(used_vars_set(strat))
            lv = set([iter(p.lead()).next().index() for p in strat if p.
                lead_deg() == 1])
            candidates = uv.difference(lv)
            if len(candidates) > 0:
                index = iter(candidates).next().index()
        if index >= 0:
            print("chosen index:", index)
            step(strat, trace, Polynomial(Monomial(Variable(index))), 0)
            step(strat, trace, Polynomial(Monomial(Variable(index))), 1)
        else:
            print("FINAL!!!", index)
            strat = symmGB_F2_python(strat, prot=True)
            if not strat.containsOne():
                print("TRACE", trace)
                print("SOLUTION")
                for p in strat.minimalize_and_tail_reduce():
                    print(p)
                raise Exception

    def sort_crit(p):
        #return (p.deg(),p.lead(),p.elength())
        return (p.lead(), p.deg(), p.elength())
    if not G:
        return
    strat = GroebnerStrategy(G[0].ring())
    strat.reduction_strategy.opt_red_tail = opt_red_tail  # True
    strat.opt_exchange = False
    strat.opt_allow_recursion = False
    #strat.opt_red_tail_deg_growth=False
    strat.opt_lazy = opt_lazy
    #strat.opt_lazy=True
    first_deg_bound = 1
    G = [Polynomial(p) for p in G]
    G.sort(key=sort_crit)
    higher_deg = {}
    if initial_bb:
        for g in G:
            print(g)
            index = strat.select(g.lead())
            if p.deg() == 1:  # (index<0):
                strat.add_as_you_wish(g)
            else:
                first_deg_bound = max(first_deg_bound, g.deg())
                strat.add_generator_delayed(g)
            print(g, len(strat))
    else:
        for g in G:
            strat.add_as_you_wish(g)
    if initial_bb:
        strat = symmGB_F2_python(strat, deg_bound=max(deg_bound,
            first_deg_bound), opt_lazy=opt_lazy, over_deg_bound=0, prot=True)
    strat.opt_lazy = opt_lazy
    print("INITIALIZED")
    branch(strat, [])


def GPS_with_non_binary_proof_path(G, proof_path, deg_bound, over_deg_bound):
    def step(strat, trace, proof_path, pos, choice):
        print(proof_path)
        print("plugin: ", pos)
        print("npairs", strat.npairs())
        strat = GroebnerStrategy(strat)
        print("npairs", strat.npairs())
        print("npairs", strat.npairs())
        for p in proof_path[pos][choice]:
            print(p)
            strat.add_generator_delayed(Polynomial(p))

        print("npairs", strat.npairs())
        print("pos:", pos)
        strat = symmGB_F2_python(strat, deg_bound=deg_bound,
            over_deg_bound=over_deg_bound, prot=True)
        print("npairs", strat.npairs())
        pos = pos + 1
        if pos >= len(proof_path):
            print("OVER")
            strat = symmGB_F2_python(strat)
        if strat.containsOne():
            pass
        else:
            if pos >= len(proof_path):
                print("npairs", strat.npairs())
                #strat.to_std_out()
                l = [p for p in strat]
                strat2 = symmGB_F2_python(l)
                #strat2.to_std_out()
                #bug: may contain Delayed polynomials
                print("!!!!!!! SOLUTION", trace)
                raise Exception
                #yield trace
            else:
                branch(strat, trace + [(pos, choice)], proof_path, pos)
                #workaround because of stack depth
                #step(strat,trace+[(var,val)],var-1, 0)
                #step(strat,trace+[(var,val)],var-1, 1)

    def branch(strat, trace, proof_path, pos):
        for i in range(len(proof_path[pos])):
            step(strat, trace, proof_path, pos, i)

    strat = GroebnerStrategy(G[0].ring())
    strat.add_generator(G[0])
    for g in G[1:]:
        strat.add_generator_delayed(g)
    branch(strat, [], proof_path, 0)


def symmGB_F2_C(G, opt_exchange=True,
    deg_bound=1000000000000, opt_lazy=False,
    over_deg_bound=0, opt_red_tail=True,
    max_growth=2.0, step_factor=1.0,
    implications=False, prot=False,
    full_prot=False, selection_size=1000,
    opt_allow_recursion=False, use_noro=False, use_faugere=False,
    ll=False, opt_linear_algebra_in_last_block=True,
    max_generators=None, red_tail_deg_growth=True,
    modified_linear_algebra=True, matrix_prefix="",
    draw_matrices=False):
    #print implications
    if use_noro:
        raise NotImplementedError("noro not implemented for symmgb")
    if (isinstance(G, list)):
        if len(G) == 0:
            return []

        G = [Polynomial(g) for g in G]
        strat = GroebnerStrategy(G[0].ring())
        strat.reduction_strategy.opt_red_tail = opt_red_tail
        strat.enabled_log = prot
        strat.opt_lazy = opt_lazy
        strat.opt_exchange = opt_exchange
        strat.reduction_strategy.opt_ll = ll
        strat.opt_allow_recursion = opt_allow_recursion
        strat.opt_linear_algebra_in_last_block = (
            opt_linear_algebra_in_last_block)
        strat.enabled_log = prot
        strat.opt_modified_linear_algebra = modified_linear_algebra
        strat.matrix_prefix = matrix_prefix
        strat.opt_draw_matrices = draw_matrices
        strat.reduction_strategy.opt_red_tail_deg_growth = red_tail_deg_growth
        #strat.add_generator(G[0])

        strat.redByReduced = False  # True

        #if PROT:
        #    print "added first"
        for g in G:  # [1:]:
            if not g.is_zero():
                strat.add_generator_delayed(g)
    strat.symmGB_F2()
    return strat


def normal_form(poly, ideal, reduced=True):
    """ Simple normal form computation of a polynomial  against an ideal.
    >>> from brial import declare_ring, normal_form
    >>> r=declare_ring(['x','y'], globals())
    >>> normal_form(x+y, [y],reduced=True)
    x
    >>> normal_form(x+y,[x,y])
    0
    """
    ring = poly.ring()
    strat = ReductionStrategy(ring)
    strat.opt_red_tail = reduced
    ideal = [Polynomial(p) for p in ideal if p != 0]
    ideal = sorted(ideal, key=Polynomial.lead)
    last = None
    for p in ideal:
        if p.lead() != last:
            strat.add_generator(p)
        else:
            warn("%s will not used for reductions" % p)
        last = p.lead()
    return strat.nf(poly)


def _test():
    import doctest
    doctest.testmod()

if __name__ == "__main__":
    _test()