This file is indexed.

/usr/lib/python2.7/dist-packages/chemfp/arena.py is in python-chemfp 1.1p1-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
"""Algorithms and data structure for working with a FingerprintArena.

NOTE: This module should not be used directly.

A FingerprintArena stores the fingerprints as a contiguous byte
string, called the `arena`. Each fingerprint takes `storage_size`
bytes, which may be larger than `num_bytes` if the fingerprints have a
specific memory alignment. The bytes for fingerprint i are
  arena[i*storage_size:i*storage_size+num_bytes]
Additional bytes must contain NUL bytes.

The lookup for `ids[i]` contains the id for fingerprint `i`.

A FingerprintArena has an optional `indices` attribute. When
available, it means that the arena fingerprints and corresponding ids
are ordered by population count, and the fingerprints with popcount
`p` start at index indices[p] and end just before indices[p+1].

"""

from __future__ import absolute_import

import ctypes
from cStringIO import StringIO
import array

from chemfp import FingerprintReader
import _chemfp
from chemfp import bitops, search

__all__ = []
    
class FingerprintArena(FingerprintReader):
    """Stores fingerprints in a contiguous block of memory

    The public attributes are:
       metadata
           `Metadata` about the fingerprints
       ids
           list of identifiers, ordered by position
    """
    def __init__(self, metadata, alignment,
                 start_padding, end_padding, storage_size, arena,
                 popcount_indices, arena_ids, start=0, end=None,
                 id_lookup=None,
                 ):
        if metadata.num_bits is None:
            raise TypeError("Missing metadata num_bits information")
        if metadata.num_bytes is None:
            raise TypeError("Missing metadata num_bytes information")
        self.metadata = metadata
        self.alignment = alignment
        self.num_bits = metadata.num_bits
        self.start_padding = start_padding
        self.end_padding = end_padding
        self.storage_size = storage_size
        self.arena = arena
        self.popcount_indices = popcount_indices
        self.arena_ids = arena_ids
        self.start = start   # the starting index in the arena (not byte position!)
        if end is None:      # the ending index in the arena (not byte position!)
            if self.metadata.num_bytes:
                end = (len(arena) - start_padding - end_padding) // self.storage_size
            else:
                end = 0
        self.end = end
        if self.start == 0 and self.end == len(arena_ids):
            self._ids = arena_ids
        else:
            self._ids = None
        self._id_lookup = id_lookup
        assert end >= start
        self._range_check = xrange(end-start)

    def __len__(self):
        """Number of fingerprint records in the FingerprintArena"""
        return self.end - self.start

    @property
    def ids(self):
        ids = self._ids
        if ids is None:
            ids = self.arena_ids[self.start:self.end]
            self._ids = ids
        return ids

    def __getitem__(self, i):
        """Return the (id, fingerprint) at position i"""
        if isinstance(i, slice):
            start, end, step = i.indices(self.end - self.start)
            if step != 1:
                raise IndexError("arena slice step size must be 1")
            if start >= end:
                return FingerprintArena(self.metadata, self.alignment,
                                        0, 0, self.storage_size, "",
                                        "", [], 0, 0)
            return FingerprintArena(self.metadata, self.alignment,
                                    self.start_padding, self.end_padding,
                                    self.storage_size, self.arena,
                                    self.popcount_indices, self.arena_ids,
                                    self.start+start, self.start+end)
        try:
            i = self._range_check[i]
        except IndexError:
            raise IndexError("arena fingerprint index out of range")
        arena_i = i + self.start
        start_offset = arena_i * self.storage_size + self.start_padding
        end_offset = start_offset + self.metadata.num_bytes
        return self.arena_ids[arena_i], self.arena[start_offset:end_offset]

    def _make_id_lookup(self):
        d = dict((id, i) for (i, id) in enumerate(self.ids))
        self._id_lookup = d.get
        return self._id_lookup
        
    def get_by_id(self, id):
        """Given the record identifier, return the (id, fingerprint) tuple or None if not present"""
        id_lookup = self._id_lookup
        if id_lookup is None:
            id_lookup = self._make_id_lookup()
        i = id_lookup(id)
        if i is None:
            return None
        arena_i = i + self.start
        start_offset = arena_i * self.storage_size + self.start_padding
        end_offset = start_offset + self.metadata.num_bytes
        return self.arena_ids[arena_i], self.arena[start_offset:end_offset]

    def get_index_by_id(self, id):
        """Given the record identifier, return the record index or None if not present"""
        id_lookup = self._id_lookup
        if id_lookup is None:
            id_lookup = self._make_id_lookup()
        return id_lookup(id)

    def get_fingerprint_by_id(self, id):
        """Given the record identifier, return its fingerprint or None if not present"""
        id_lookup = self._id_lookup
        if id_lookup is None:
            id_lookup = self._make_id_lookup()
        i = id_lookup(id)
        if i is None:
            return None
        arena_i = i + self.start
        start_offset = arena_i * self.storage_size + self.start_padding
        end_offset = start_offset + self.metadata.num_bytes
        return self.arena[start_offset:end_offset]

    def save(self, destination):
        """Save the arena contents to the given filename or file object"""
        from . import io
        need_close = False
        if isinstance(destination, basestring):
            need_close = True
            output = io.open_output(destination)
        else:
            output = destination

        try:
            io.write_fps1_magic(output)
            io.write_fps1_header(output, self.metadata)
            try:
                for i, (id, fp) in enumerate(self):
                    io.write_fps1_fingerprint(output, fp, id)
            except ValueError, err:
                raise ValueError("%s in record %i" % (err, i+1))
        finally:
            if need_close:
                output.close()
                
    def reset(self):
        """This method is not documented"""
        pass

    def __iter__(self):
        """Iterate over the (id, fingerprint) contents of the arena"""
        storage_size = self.storage_size
        if not storage_size:
            return
        target_fp_size = self.metadata.num_bytes
        arena = self.arena
        for id, start_offset in zip(self.arena_ids[self.start:self.end],
                                    xrange(self.start*storage_size+self.start_padding,
                                           self.end*storage_size+self.start_padding,
                                           storage_size)):
            yield id, arena[start_offset:start_offset+target_fp_size]

    def iter_arenas(self, arena_size = 1000):
        """iterate through `arena_size` fingerprints at a time

        This iterates through the fingerprints `arena_size` at a time,
        yielding a FingerprintArena for each group. Working with
        arenas is often faster than processing one fingerprint at a
        time, and more memory efficient than processing all
        fingerprints at once.

        If arena_size=None then this makes an iterator containing
        a single arena containing all of the input.
        
        :param arena_size: The number of fingerprints to put into an arena.
        :type arena_size: positive integer, or None
        """
        if arena_size is None:
            yield self
            return
        
        storage_size = self.storage_size
        start = self.start
        for i in xrange(0, len(self), arena_size):
            end = start+arena_size
            if end > self.end:
                end = self.end
            yield FingerprintArena(self.metadata, self.alignment,
                                   self.start_padding, self.end_padding,
                                   storage_size, self.arena,
                                   self.popcount_indices, self.arena_ids, start, end)
            start = end

    def count_tanimoto_hits_fp(self, query_fp, threshold=0.7):
        """Count the fingerprints which are similar enough to the query fingerprint

        DEPRECATED: Use `chemfp.search.count_tanimoto_hits_fp`_ instead.
        
        Return the number of fingerprints in this arena which are
        at least `threshold` similar to the query fingerprint `query_fp`.

        :param query_fp: query fingerprint
        :type query_fp: byte string
        :param threshold: minimum similarity threshold (default: 0.7)
        :type threshold: float between 0.0 and 1.0, inclusive
        :returns: integer count
        """
        return search.count_tanimoto_hits_fp(query_fp, self, threshold)

    def count_tanimoto_hits_arena(self, queries, threshold=0.7):
        """Count the fingerprints which are similar enough to each query fingerprint

        DEPRECATED: Use `chemfp.search.count_tanimoto_hits_arena`_ or
        `chemfp.search.count_tanimoto_hits_symmetric`_ instead.
        
        Returns an iterator containing the (query_id, count) for each
        fingerprint in `queries`, where `query_id` is the query
        fingerprint id and `count` is the number of fingerprints found
        which are at least `threshold` similar to the query.

        The order of results is the same as the order of the
        queries. For efficiency reasons, `arena_size` queries are
        processed at a time.
        
        :param queries: query fingerprints
        :type query_fp: FingerprintArena or FPSReader (must implement iter_arenas())
        :param threshold: minimum similarity threshold (default: 0.7)
        :type threshold: float between 0.0 and 1.0, inclusive
        :param arena_size: number of queries to process at a time (default: 100)
        :type arena_size: positive integer
        :returns: list of (query_id, integer count) pairs, one for each query
        """
        return search.count_tanimoto_hits_arena(queries, self, threshold)

    def threshold_tanimoto_search_fp(self, query_fp, threshold=0.7):
        """Find the fingerprints which are similar enough to the query fingerprint

        DEPRECATED: Use `chemfp.search.threshold_tanimoto_search_fp`_ instead.

        Find all of the fingerprints in this arena which are at least
        `threshold` similar to the query fingerprint `query_fp`.
        The hits are returned as a list containing (id, score) tuples
        in arbitrary order.
        
        :param query_fp: query fingerprint
        :type query_fp: byte string
        :param threshold: minimum similarity threshold (default: 0.7)
        :type threshold: float between 0.0 and 1.0, inclusive
        :returns: list of (int, score) tuples
        """
        return search.threshold_tanimoto_search_fp(query_fp, self, threshold)

    def threshold_tanimoto_search_arena(self, queries, threshold=0.7, arena_size=100):
        """Find the fingerprints which are similar to each of the query fingerprints

        DEPRECATED: Use `chemfp.search.threshold_tanimoto_search_arena`_
        or `chemfp.search.threshold_tanimoto_search_symmetric`_ instead.

        For each fingerprint in the `query_arena`, find all of the
        fingerprints in this arena which are at least `threshold`
        similar. The hits are returned as a `SearchResults` instance.
        
        :param query_arena: query arena
        :type query_arena: FingerprintArena
        :param threshold: minimum similarity threshold (default: 0.7)
        :type threshold: float between 0.0 and 1.0, inclusive
        :returns: SearchResults
        """
        return search.threshold_tanimoto_search_arena(queries, self, threshold)

    def knearest_tanimoto_search_fp(self, query_fp, k=3, threshold=0.7):
        """Find the k-nearest fingerprints which are similar to the query fingerprint

        DEPRECATED: Use `chemfp.search.knearest_tanimoto_search_fp`_ instead.
        
        Find the `k` fingerprints in this arena which are most similar
        to the query fingerprint `query_fp` and which are at least `threshold`
        similar to the query. The hits are returned as a list of
        (id, score) tuples sorted with the highest similarity first.
        Ties are broken arbitrarily.

        :param query_fp: query fingerpring
        :type query_fp: byte string
        :param k: number of nearest neighbors to find (default: 3)
        :type k: positive integer
        :param threshold: minimum similarity threshold (default: 0.7)
        :type threshold: float between 0.0 and 1.0, inclusive
        :returns: SearchResults
        """
        return search.knearest_tanimoto_search_fp(query_fp, self, k, threshold)

    def knearest_tanimoto_search_arena(self, queries, k=3, threshold=0.7):
        """Find the k-nearest fingerprint which are similar to each of the query fingerprints

        DEPRECATED: Use `chemfp.search.knearest_tanimoto_search_arena`_ or
        `chemfp.search.knearest_tanimoto_search_symmetric`_ instead.

        For each fingerprint in the `query_arena`, find the `k`
        fingerprints in this arena which are most similar and which
        are at least `threshold` similar to the query fingerprint.
        The hits are returned as a SearchResult where the hits are
        sorted with the highest similarity first. Ties are broken
        arbitrarily.
        
        :param query_arena: query arena
        :type query_arena: FingerprintArena
        :param k: number of nearest neighbors to find (default: 3)
        :type k: positive integer
        :param threshold: minimum similarity threshold (default: 0.7)
        :type threshold: float between 0.0 and 1.0, inclusive
        :returns: SearchResult
        """
        return search.knearest_tanimoto_search_arena(queries, self, k, threshold)

    def copy(self, indices=None, reorder=None):
        """Create a new arena using either all or some of the fingerprints in this arena

        By default this create a new arena. The fingerprint data block and ids may
        be shared with the original arena, which makes this a shallow copy. If the
        original arena is a slice, or "sub-arena" of an arena, then the copy will
        allocate new space to store just the fingerprints in the slice and use its
        own list for the ids.

        The `indices` parameter, if not None, is an iterable which contains the
        indicies of the fingerprint records to copy. Duplicates are allowed, though
        discouraged.

        If indices are specified then the default `reorder=None` or a `reorder=True`
        will reorder the fingerprints for the new arena by popcount. This improves
        overall search performance. With `reorder=False`, the fingerprints will be
        in order given by the indices.

        If indices are not given, then the default is to preserve the order type of
        the original arena. Otherwise `reorder=True` will always reorder and
        `reorder=False` will leave them in the current order.

        :param indices: indicies of the records to copy into the new arena
        :type indices: iterable containing integers, or None
        :param reorder: describes how to order the fingerprints
        :type reorder: True to reorder, False to leave in input order, None for default action
        """
        if reorder is None:
            if indices is None:
                # This is a pure copy. Reorder only if there are popcount indices.
                reorder = (self.popcount_indices != "")
            else:
                # The default is to go fast. If you want to preserve index order
                # then you'll need to set reorder=False
                reorder = True
            
        if indices is None:
            # Make a completely new arena
            # Handle the trivial case where I don't need to do anything.
            if (self.start == 0 and
                (self.end*self.storage_size + self.start_padding + self.end_padding == len(self.arena)) and
                (not reorder or self.popcount_indices)):
                return FingerprintArena(self.metadata, self.alignment,
                                        self.start_padding, self.end_padding, self.storage_size, self.arena,
                                        self.popcount_indices, self.arena_ids,
                                        start = 0, end = self.end,
                                        id_lookup = self._id_lookup)
            
            # Otherwise I need to do some work
            # Make a copy of the actual fingerprints. (Which could be a subarena.)
            start = self.start_padding + self.start*self.storage_size
            end = self.start_padding + self.end*self.storage_size
            arena = self.arena[start:end]

            # If we don't have popcount_indices and don't want them ordered
            # then just do the alignment and we're done.
            if not reorder and not self.popcount_indices:
                # Don't reorder the unordered fingerprints
                start_padding, end_padding, unsorted_arena = (
                    _chemfp.make_unsorted_aligned_arena(arena, self.alignment))
                return FingerprintArena(self.metadata, self.alignment, start_padding, end_padding,
                                        self.storage_size, unsorted_arena, "", self.ids,
                                        id_lookup = self._id_lookup)

            # Either we're already sorted or we should become sorted.
            # If we're sorted then make_sorted_aligned_arena will detect
            # that and keep the old arena. Otherwise it sorts first and
            # makes a new arena block.
            current_ids = self.ids
            ordering = (ChemFPOrderedPopcount*len(current_ids))()
            popcounts = array.array("i", (0,)*(self.metadata.num_bits+2))
            start_padding, end_padding, arena = _chemfp.make_sorted_aligned_arena(
                self.metadata.num_bits, self.storage_size, arena, len(current_ids),
                ordering, popcounts, self.alignment)

            reordered_ids = [current_ids[item.index] for item in ordering]
            return FingerprintArena(self.metadata, self.alignment,
                                    start_padding, end_padding, self.storage_size,
                                    arena, popcounts.tostring(), reordered_ids)

        # On this pathway, we want to make a new arena which contains
        # selected fingerprints given indices into the old arena.
        
        arena = self.arena
        storage_size = self.storage_size
        start = self.start
        start_padding = self.start_padding
        arena_ids = self.arena_ids
        
        # First make sure that all of the indices are in range.
        # This will also convert negative indices into positive ones.
        new_indices = []
        range_check = self._range_check
        try:
            for i in indices:
                new_indices.append(range_check[i])
        except IndexError:
            raise IndexError("arena fingerprint index %d is out of range" % (i,))

        if reorder and self.popcount_indices:
            # There's a slight performance benefit because
            # make_sorted_aligned_arena will see that the fingerprints
            # are already in sorted order and not resort.
            # XXX Is that true? Why do a Python sort instead of a C sort?
            # Perhaps because then I don't need to copy fingerprints?
            new_indices.sort()

        # Copy the fingerprints over to a new arena block
        unsorted_fps = []
        new_ids = []
        for new_i in new_indices:
            start_offset = start_padding + new_i*storage_size
            end_offset = start_offset + storage_size
            unsorted_fps.append(arena[start_offset:end_offset])
            new_ids.append(arena_ids[new_i])
                
        unsorted_arena = "".join(unsorted_fps)
        unsorted_fps = None   # regain some memory

        # If the caller doesn't want ordered data, then leave it unsorted
        if not reorder:
            start_padding, end_padding, unsorted_arena = _chemfp.make_unsorted_aligned_arena(
                unsorted_arena, self.alignment)
            return FingerprintArena(self.metadata, self.alignment, start_padding, end_padding, storage_size,
                                    unsorted_arena, "", new_ids)

        # Otherwise, reorder and align the area, along with popcount information
        ordering = (ChemFPOrderedPopcount*len(new_ids))()
        popcounts = array.array("i", (0,)*(self.metadata.num_bits+2))

        start_padding, end_padding, sorted_arena = _chemfp.make_sorted_aligned_arena(
            self.metadata.num_bits, storage_size, unsorted_arena, len(new_ids),
            ordering, popcounts, self.alignment)

        reordered_ids = [new_ids[item.index] for item in ordering]
        return FingerprintArena(self.metadata, self.alignment,
                                start_padding, end_padding, storage_size,
                                sorted_arena, popcounts.tostring(), reordered_ids)
        

# TODO: push more of this malloc-management down into C
class ChemFPOrderedPopcount(ctypes.Structure):
    _fields_ = [("popcount", ctypes.c_int),
                ("index", ctypes.c_int)]


_methods = bitops.get_methods()
_has_popcnt = "POPCNT" in _methods
_has_ssse3 = "ssse3" in _methods

def get_optimal_alignment(num_bits):
    if num_bits <= 32:
        # Just in case!
        if num_bits <= 8:
            return 1
        return 4

    # Since the ssse3 method must examine at least 512 bits while the
    # Gillies method doesn't, this puts the time tradeoff around 210 bits.
    # I decided to save a bit of space and round that up to 224 bits.
    # (Experience will tell us if 256 is a better boundary.)
    if num_bits <= 224:
        return 8

    # If you have POPCNT (and you're using it) then there's no reason
    # to use a larger alignment
    if _has_popcnt:
        if num_bits >= 768:
            if bitops.get_alignment_method("align8-large") == "POPCNT":
                return 8
        else:
            if bitops.get_alignment_method("align8-small") == "POPCNT":
                return 8

    # If you don't have SSSE3 or you aren't using it, then use 8
    if not _has_ssse3 or bitops.get_alignment_method("align-ssse3") != "ssse3":
        return 8

    # In my timing tests:
    #    Lauradoux takes 12.6s
    #    ssse3 takes in 9.0s
    #    Gillies takes 22s


    # Otherwise, go ahead and pad up to 64 bytes
    # (Even at 768 bits/96 bytes, the SSSE3 method is faster.)
    return 64


def fps_to_arena(fps_reader, metadata=None, reorder=True, alignment=None):
    if metadata is None:
        metadata = fps_reader.metadata
    num_bits = metadata.num_bits
    if not num_bits:
        if metadata.num_bytes is None:
            raise ValueError("metadata must contain at least one of num_bits or num_bytes")
        num_bits = metadata.num_bytes * 8
    #assert num_bits

    if alignment is None:
        alignment = get_optimal_alignment(num_bits)

    num_bytes = metadata.num_bytes

    storage_size = num_bytes
    if storage_size % alignment != 0:
        n = alignment - storage_size % alignment
        end_padding = "\0" * n
        storage_size += n
    else:
        end_padding = None

    ids = []
    unsorted_fps = StringIO()
    for (id, fp) in fps_reader:
        if len(fp) != num_bytes:
            raise ValueError("Fingerprint for id %r has %d bytes while the metadata says it should have %d"
                             % (id, len(fp), num_bytes))
        unsorted_fps.write(fp)
        if end_padding:
            unsorted_fps.write(end_padding)
        ids.append(id)

    unsorted_arena = unsorted_fps.getvalue()
    unsorted_fps.close()
    unsorted_fps = None


    if not reorder or not metadata.num_bits:
        start_padding, end_padding, unsorted_arena = _chemfp.make_unsorted_aligned_arena(
            unsorted_arena, alignment)
        return FingerprintArena(metadata, alignment, start_padding, end_padding, storage_size,
                                unsorted_arena, "", ids)

    # Reorder
        
    ordering = (ChemFPOrderedPopcount*len(ids))()
    popcounts = array.array("i", (0,)*(metadata.num_bits+2))

    start_padding, end_padding, unsorted_arena = _chemfp.make_sorted_aligned_arena(
        num_bits, storage_size, unsorted_arena, len(ids),
        ordering, popcounts, alignment)

    new_ids = [ids[item.index] for item in ordering]
    return FingerprintArena(metadata, alignment,
                            start_padding, end_padding, storage_size,
                            unsorted_arena, popcounts.tostring(), new_ids)