/usr/lib/python2.7/dist-packages/chemfp/arena.py is in python-chemfp 1.1p1-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 | """Algorithms and data structure for working with a FingerprintArena.
NOTE: This module should not be used directly.
A FingerprintArena stores the fingerprints as a contiguous byte
string, called the `arena`. Each fingerprint takes `storage_size`
bytes, which may be larger than `num_bytes` if the fingerprints have a
specific memory alignment. The bytes for fingerprint i are
arena[i*storage_size:i*storage_size+num_bytes]
Additional bytes must contain NUL bytes.
The lookup for `ids[i]` contains the id for fingerprint `i`.
A FingerprintArena has an optional `indices` attribute. When
available, it means that the arena fingerprints and corresponding ids
are ordered by population count, and the fingerprints with popcount
`p` start at index indices[p] and end just before indices[p+1].
"""
from __future__ import absolute_import
import ctypes
from cStringIO import StringIO
import array
from chemfp import FingerprintReader
import _chemfp
from chemfp import bitops, search
__all__ = []
class FingerprintArena(FingerprintReader):
"""Stores fingerprints in a contiguous block of memory
The public attributes are:
metadata
`Metadata` about the fingerprints
ids
list of identifiers, ordered by position
"""
def __init__(self, metadata, alignment,
start_padding, end_padding, storage_size, arena,
popcount_indices, arena_ids, start=0, end=None,
id_lookup=None,
):
if metadata.num_bits is None:
raise TypeError("Missing metadata num_bits information")
if metadata.num_bytes is None:
raise TypeError("Missing metadata num_bytes information")
self.metadata = metadata
self.alignment = alignment
self.num_bits = metadata.num_bits
self.start_padding = start_padding
self.end_padding = end_padding
self.storage_size = storage_size
self.arena = arena
self.popcount_indices = popcount_indices
self.arena_ids = arena_ids
self.start = start # the starting index in the arena (not byte position!)
if end is None: # the ending index in the arena (not byte position!)
if self.metadata.num_bytes:
end = (len(arena) - start_padding - end_padding) // self.storage_size
else:
end = 0
self.end = end
if self.start == 0 and self.end == len(arena_ids):
self._ids = arena_ids
else:
self._ids = None
self._id_lookup = id_lookup
assert end >= start
self._range_check = xrange(end-start)
def __len__(self):
"""Number of fingerprint records in the FingerprintArena"""
return self.end - self.start
@property
def ids(self):
ids = self._ids
if ids is None:
ids = self.arena_ids[self.start:self.end]
self._ids = ids
return ids
def __getitem__(self, i):
"""Return the (id, fingerprint) at position i"""
if isinstance(i, slice):
start, end, step = i.indices(self.end - self.start)
if step != 1:
raise IndexError("arena slice step size must be 1")
if start >= end:
return FingerprintArena(self.metadata, self.alignment,
0, 0, self.storage_size, "",
"", [], 0, 0)
return FingerprintArena(self.metadata, self.alignment,
self.start_padding, self.end_padding,
self.storage_size, self.arena,
self.popcount_indices, self.arena_ids,
self.start+start, self.start+end)
try:
i = self._range_check[i]
except IndexError:
raise IndexError("arena fingerprint index out of range")
arena_i = i + self.start
start_offset = arena_i * self.storage_size + self.start_padding
end_offset = start_offset + self.metadata.num_bytes
return self.arena_ids[arena_i], self.arena[start_offset:end_offset]
def _make_id_lookup(self):
d = dict((id, i) for (i, id) in enumerate(self.ids))
self._id_lookup = d.get
return self._id_lookup
def get_by_id(self, id):
"""Given the record identifier, return the (id, fingerprint) tuple or None if not present"""
id_lookup = self._id_lookup
if id_lookup is None:
id_lookup = self._make_id_lookup()
i = id_lookup(id)
if i is None:
return None
arena_i = i + self.start
start_offset = arena_i * self.storage_size + self.start_padding
end_offset = start_offset + self.metadata.num_bytes
return self.arena_ids[arena_i], self.arena[start_offset:end_offset]
def get_index_by_id(self, id):
"""Given the record identifier, return the record index or None if not present"""
id_lookup = self._id_lookup
if id_lookup is None:
id_lookup = self._make_id_lookup()
return id_lookup(id)
def get_fingerprint_by_id(self, id):
"""Given the record identifier, return its fingerprint or None if not present"""
id_lookup = self._id_lookup
if id_lookup is None:
id_lookup = self._make_id_lookup()
i = id_lookup(id)
if i is None:
return None
arena_i = i + self.start
start_offset = arena_i * self.storage_size + self.start_padding
end_offset = start_offset + self.metadata.num_bytes
return self.arena[start_offset:end_offset]
def save(self, destination):
"""Save the arena contents to the given filename or file object"""
from . import io
need_close = False
if isinstance(destination, basestring):
need_close = True
output = io.open_output(destination)
else:
output = destination
try:
io.write_fps1_magic(output)
io.write_fps1_header(output, self.metadata)
try:
for i, (id, fp) in enumerate(self):
io.write_fps1_fingerprint(output, fp, id)
except ValueError, err:
raise ValueError("%s in record %i" % (err, i+1))
finally:
if need_close:
output.close()
def reset(self):
"""This method is not documented"""
pass
def __iter__(self):
"""Iterate over the (id, fingerprint) contents of the arena"""
storage_size = self.storage_size
if not storage_size:
return
target_fp_size = self.metadata.num_bytes
arena = self.arena
for id, start_offset in zip(self.arena_ids[self.start:self.end],
xrange(self.start*storage_size+self.start_padding,
self.end*storage_size+self.start_padding,
storage_size)):
yield id, arena[start_offset:start_offset+target_fp_size]
def iter_arenas(self, arena_size = 1000):
"""iterate through `arena_size` fingerprints at a time
This iterates through the fingerprints `arena_size` at a time,
yielding a FingerprintArena for each group. Working with
arenas is often faster than processing one fingerprint at a
time, and more memory efficient than processing all
fingerprints at once.
If arena_size=None then this makes an iterator containing
a single arena containing all of the input.
:param arena_size: The number of fingerprints to put into an arena.
:type arena_size: positive integer, or None
"""
if arena_size is None:
yield self
return
storage_size = self.storage_size
start = self.start
for i in xrange(0, len(self), arena_size):
end = start+arena_size
if end > self.end:
end = self.end
yield FingerprintArena(self.metadata, self.alignment,
self.start_padding, self.end_padding,
storage_size, self.arena,
self.popcount_indices, self.arena_ids, start, end)
start = end
def count_tanimoto_hits_fp(self, query_fp, threshold=0.7):
"""Count the fingerprints which are similar enough to the query fingerprint
DEPRECATED: Use `chemfp.search.count_tanimoto_hits_fp`_ instead.
Return the number of fingerprints in this arena which are
at least `threshold` similar to the query fingerprint `query_fp`.
:param query_fp: query fingerprint
:type query_fp: byte string
:param threshold: minimum similarity threshold (default: 0.7)
:type threshold: float between 0.0 and 1.0, inclusive
:returns: integer count
"""
return search.count_tanimoto_hits_fp(query_fp, self, threshold)
def count_tanimoto_hits_arena(self, queries, threshold=0.7):
"""Count the fingerprints which are similar enough to each query fingerprint
DEPRECATED: Use `chemfp.search.count_tanimoto_hits_arena`_ or
`chemfp.search.count_tanimoto_hits_symmetric`_ instead.
Returns an iterator containing the (query_id, count) for each
fingerprint in `queries`, where `query_id` is the query
fingerprint id and `count` is the number of fingerprints found
which are at least `threshold` similar to the query.
The order of results is the same as the order of the
queries. For efficiency reasons, `arena_size` queries are
processed at a time.
:param queries: query fingerprints
:type query_fp: FingerprintArena or FPSReader (must implement iter_arenas())
:param threshold: minimum similarity threshold (default: 0.7)
:type threshold: float between 0.0 and 1.0, inclusive
:param arena_size: number of queries to process at a time (default: 100)
:type arena_size: positive integer
:returns: list of (query_id, integer count) pairs, one for each query
"""
return search.count_tanimoto_hits_arena(queries, self, threshold)
def threshold_tanimoto_search_fp(self, query_fp, threshold=0.7):
"""Find the fingerprints which are similar enough to the query fingerprint
DEPRECATED: Use `chemfp.search.threshold_tanimoto_search_fp`_ instead.
Find all of the fingerprints in this arena which are at least
`threshold` similar to the query fingerprint `query_fp`.
The hits are returned as a list containing (id, score) tuples
in arbitrary order.
:param query_fp: query fingerprint
:type query_fp: byte string
:param threshold: minimum similarity threshold (default: 0.7)
:type threshold: float between 0.0 and 1.0, inclusive
:returns: list of (int, score) tuples
"""
return search.threshold_tanimoto_search_fp(query_fp, self, threshold)
def threshold_tanimoto_search_arena(self, queries, threshold=0.7, arena_size=100):
"""Find the fingerprints which are similar to each of the query fingerprints
DEPRECATED: Use `chemfp.search.threshold_tanimoto_search_arena`_
or `chemfp.search.threshold_tanimoto_search_symmetric`_ instead.
For each fingerprint in the `query_arena`, find all of the
fingerprints in this arena which are at least `threshold`
similar. The hits are returned as a `SearchResults` instance.
:param query_arena: query arena
:type query_arena: FingerprintArena
:param threshold: minimum similarity threshold (default: 0.7)
:type threshold: float between 0.0 and 1.0, inclusive
:returns: SearchResults
"""
return search.threshold_tanimoto_search_arena(queries, self, threshold)
def knearest_tanimoto_search_fp(self, query_fp, k=3, threshold=0.7):
"""Find the k-nearest fingerprints which are similar to the query fingerprint
DEPRECATED: Use `chemfp.search.knearest_tanimoto_search_fp`_ instead.
Find the `k` fingerprints in this arena which are most similar
to the query fingerprint `query_fp` and which are at least `threshold`
similar to the query. The hits are returned as a list of
(id, score) tuples sorted with the highest similarity first.
Ties are broken arbitrarily.
:param query_fp: query fingerpring
:type query_fp: byte string
:param k: number of nearest neighbors to find (default: 3)
:type k: positive integer
:param threshold: minimum similarity threshold (default: 0.7)
:type threshold: float between 0.0 and 1.0, inclusive
:returns: SearchResults
"""
return search.knearest_tanimoto_search_fp(query_fp, self, k, threshold)
def knearest_tanimoto_search_arena(self, queries, k=3, threshold=0.7):
"""Find the k-nearest fingerprint which are similar to each of the query fingerprints
DEPRECATED: Use `chemfp.search.knearest_tanimoto_search_arena`_ or
`chemfp.search.knearest_tanimoto_search_symmetric`_ instead.
For each fingerprint in the `query_arena`, find the `k`
fingerprints in this arena which are most similar and which
are at least `threshold` similar to the query fingerprint.
The hits are returned as a SearchResult where the hits are
sorted with the highest similarity first. Ties are broken
arbitrarily.
:param query_arena: query arena
:type query_arena: FingerprintArena
:param k: number of nearest neighbors to find (default: 3)
:type k: positive integer
:param threshold: minimum similarity threshold (default: 0.7)
:type threshold: float between 0.0 and 1.0, inclusive
:returns: SearchResult
"""
return search.knearest_tanimoto_search_arena(queries, self, k, threshold)
def copy(self, indices=None, reorder=None):
"""Create a new arena using either all or some of the fingerprints in this arena
By default this create a new arena. The fingerprint data block and ids may
be shared with the original arena, which makes this a shallow copy. If the
original arena is a slice, or "sub-arena" of an arena, then the copy will
allocate new space to store just the fingerprints in the slice and use its
own list for the ids.
The `indices` parameter, if not None, is an iterable which contains the
indicies of the fingerprint records to copy. Duplicates are allowed, though
discouraged.
If indices are specified then the default `reorder=None` or a `reorder=True`
will reorder the fingerprints for the new arena by popcount. This improves
overall search performance. With `reorder=False`, the fingerprints will be
in order given by the indices.
If indices are not given, then the default is to preserve the order type of
the original arena. Otherwise `reorder=True` will always reorder and
`reorder=False` will leave them in the current order.
:param indices: indicies of the records to copy into the new arena
:type indices: iterable containing integers, or None
:param reorder: describes how to order the fingerprints
:type reorder: True to reorder, False to leave in input order, None for default action
"""
if reorder is None:
if indices is None:
# This is a pure copy. Reorder only if there are popcount indices.
reorder = (self.popcount_indices != "")
else:
# The default is to go fast. If you want to preserve index order
# then you'll need to set reorder=False
reorder = True
if indices is None:
# Make a completely new arena
# Handle the trivial case where I don't need to do anything.
if (self.start == 0 and
(self.end*self.storage_size + self.start_padding + self.end_padding == len(self.arena)) and
(not reorder or self.popcount_indices)):
return FingerprintArena(self.metadata, self.alignment,
self.start_padding, self.end_padding, self.storage_size, self.arena,
self.popcount_indices, self.arena_ids,
start = 0, end = self.end,
id_lookup = self._id_lookup)
# Otherwise I need to do some work
# Make a copy of the actual fingerprints. (Which could be a subarena.)
start = self.start_padding + self.start*self.storage_size
end = self.start_padding + self.end*self.storage_size
arena = self.arena[start:end]
# If we don't have popcount_indices and don't want them ordered
# then just do the alignment and we're done.
if not reorder and not self.popcount_indices:
# Don't reorder the unordered fingerprints
start_padding, end_padding, unsorted_arena = (
_chemfp.make_unsorted_aligned_arena(arena, self.alignment))
return FingerprintArena(self.metadata, self.alignment, start_padding, end_padding,
self.storage_size, unsorted_arena, "", self.ids,
id_lookup = self._id_lookup)
# Either we're already sorted or we should become sorted.
# If we're sorted then make_sorted_aligned_arena will detect
# that and keep the old arena. Otherwise it sorts first and
# makes a new arena block.
current_ids = self.ids
ordering = (ChemFPOrderedPopcount*len(current_ids))()
popcounts = array.array("i", (0,)*(self.metadata.num_bits+2))
start_padding, end_padding, arena = _chemfp.make_sorted_aligned_arena(
self.metadata.num_bits, self.storage_size, arena, len(current_ids),
ordering, popcounts, self.alignment)
reordered_ids = [current_ids[item.index] for item in ordering]
return FingerprintArena(self.metadata, self.alignment,
start_padding, end_padding, self.storage_size,
arena, popcounts.tostring(), reordered_ids)
# On this pathway, we want to make a new arena which contains
# selected fingerprints given indices into the old arena.
arena = self.arena
storage_size = self.storage_size
start = self.start
start_padding = self.start_padding
arena_ids = self.arena_ids
# First make sure that all of the indices are in range.
# This will also convert negative indices into positive ones.
new_indices = []
range_check = self._range_check
try:
for i in indices:
new_indices.append(range_check[i])
except IndexError:
raise IndexError("arena fingerprint index %d is out of range" % (i,))
if reorder and self.popcount_indices:
# There's a slight performance benefit because
# make_sorted_aligned_arena will see that the fingerprints
# are already in sorted order and not resort.
# XXX Is that true? Why do a Python sort instead of a C sort?
# Perhaps because then I don't need to copy fingerprints?
new_indices.sort()
# Copy the fingerprints over to a new arena block
unsorted_fps = []
new_ids = []
for new_i in new_indices:
start_offset = start_padding + new_i*storage_size
end_offset = start_offset + storage_size
unsorted_fps.append(arena[start_offset:end_offset])
new_ids.append(arena_ids[new_i])
unsorted_arena = "".join(unsorted_fps)
unsorted_fps = None # regain some memory
# If the caller doesn't want ordered data, then leave it unsorted
if not reorder:
start_padding, end_padding, unsorted_arena = _chemfp.make_unsorted_aligned_arena(
unsorted_arena, self.alignment)
return FingerprintArena(self.metadata, self.alignment, start_padding, end_padding, storage_size,
unsorted_arena, "", new_ids)
# Otherwise, reorder and align the area, along with popcount information
ordering = (ChemFPOrderedPopcount*len(new_ids))()
popcounts = array.array("i", (0,)*(self.metadata.num_bits+2))
start_padding, end_padding, sorted_arena = _chemfp.make_sorted_aligned_arena(
self.metadata.num_bits, storage_size, unsorted_arena, len(new_ids),
ordering, popcounts, self.alignment)
reordered_ids = [new_ids[item.index] for item in ordering]
return FingerprintArena(self.metadata, self.alignment,
start_padding, end_padding, storage_size,
sorted_arena, popcounts.tostring(), reordered_ids)
# TODO: push more of this malloc-management down into C
class ChemFPOrderedPopcount(ctypes.Structure):
_fields_ = [("popcount", ctypes.c_int),
("index", ctypes.c_int)]
_methods = bitops.get_methods()
_has_popcnt = "POPCNT" in _methods
_has_ssse3 = "ssse3" in _methods
def get_optimal_alignment(num_bits):
if num_bits <= 32:
# Just in case!
if num_bits <= 8:
return 1
return 4
# Since the ssse3 method must examine at least 512 bits while the
# Gillies method doesn't, this puts the time tradeoff around 210 bits.
# I decided to save a bit of space and round that up to 224 bits.
# (Experience will tell us if 256 is a better boundary.)
if num_bits <= 224:
return 8
# If you have POPCNT (and you're using it) then there's no reason
# to use a larger alignment
if _has_popcnt:
if num_bits >= 768:
if bitops.get_alignment_method("align8-large") == "POPCNT":
return 8
else:
if bitops.get_alignment_method("align8-small") == "POPCNT":
return 8
# If you don't have SSSE3 or you aren't using it, then use 8
if not _has_ssse3 or bitops.get_alignment_method("align-ssse3") != "ssse3":
return 8
# In my timing tests:
# Lauradoux takes 12.6s
# ssse3 takes in 9.0s
# Gillies takes 22s
# Otherwise, go ahead and pad up to 64 bytes
# (Even at 768 bits/96 bytes, the SSSE3 method is faster.)
return 64
def fps_to_arena(fps_reader, metadata=None, reorder=True, alignment=None):
if metadata is None:
metadata = fps_reader.metadata
num_bits = metadata.num_bits
if not num_bits:
if metadata.num_bytes is None:
raise ValueError("metadata must contain at least one of num_bits or num_bytes")
num_bits = metadata.num_bytes * 8
#assert num_bits
if alignment is None:
alignment = get_optimal_alignment(num_bits)
num_bytes = metadata.num_bytes
storage_size = num_bytes
if storage_size % alignment != 0:
n = alignment - storage_size % alignment
end_padding = "\0" * n
storage_size += n
else:
end_padding = None
ids = []
unsorted_fps = StringIO()
for (id, fp) in fps_reader:
if len(fp) != num_bytes:
raise ValueError("Fingerprint for id %r has %d bytes while the metadata says it should have %d"
% (id, len(fp), num_bytes))
unsorted_fps.write(fp)
if end_padding:
unsorted_fps.write(end_padding)
ids.append(id)
unsorted_arena = unsorted_fps.getvalue()
unsorted_fps.close()
unsorted_fps = None
if not reorder or not metadata.num_bits:
start_padding, end_padding, unsorted_arena = _chemfp.make_unsorted_aligned_arena(
unsorted_arena, alignment)
return FingerprintArena(metadata, alignment, start_padding, end_padding, storage_size,
unsorted_arena, "", ids)
# Reorder
ordering = (ChemFPOrderedPopcount*len(ids))()
popcounts = array.array("i", (0,)*(metadata.num_bits+2))
start_padding, end_padding, unsorted_arena = _chemfp.make_sorted_aligned_arena(
num_bits, storage_size, unsorted_arena, len(ids),
ordering, popcounts, alignment)
new_ids = [ids[item.index] for item in ordering]
return FingerprintArena(metadata, alignment,
start_padding, end_padding, storage_size,
unsorted_arena, popcounts.tostring(), new_ids)
|