This file is indexed.

/usr/lib/python2.7/dist-packages/fisx-1.1.2.egg-info/PKG-INFO is in python-fisx 1.1.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
Metadata-Version: 1.1
Name: fisx
Version: 1.1.2
Summary: Quantitative X-Ray Fluorescence Analysis Support Library
Home-page: https://github.com/vasole/fisx
Author: V. Armando Solé
Author-email: sole@esrf.fr
License: MIT
Download-URL: https://github.com/vasole/fisx/archive/v1.1.2.tar.gz
Description: ====
        fisx
        ====
        
        Main development website: https://github.com/vasole/fisx
        
        .. image:: https://travis-ci.org/vasole/fisx.svg?branch=master
            :target: https://travis-ci.org/vasole/fisx
        
        .. image:: https://ci.appveyor.com/api/projects/status/github/vasole/fisx?branch=master&svg=true
            :target: https://ci.appveyor.com/project/vasole/fisx
        
        This software library implements formulas to calculate, given an experimental setup, the expected x-ray fluorescence intensities. The library accounts for secondary and tertiary excitation, K, L and M shell emission lines and de-excitation cascade effects. The basic implementation is written in C++ and a Python binding is provided.
        
        Account for secondary excitation is made via the reference:
        
        D.K.G. de Boer, X-Ray Spectrometry 19 (1990) 145-154
        
        with the correction mentioned in:
        
        D.K.G. de Boer et al, X-Ray Spectrometry 22 (1993) 33-28
        
        Tertiary excitation is accounted for via an appproximation.
        
        The accuracy of the corrections has been tested against experimental data and Monte Carlo simulations.
        
        License
        -------
        
        This code is relased under the MIT license as detailed in the LICENSE file.
        
        Installation
        ------------
        
        To install the library for Python just use ``pip install fisx``. If you want build the library for python use from the code source repository, just use one of the ``pip install .`` or the ``python setup.py install`` approaches. It is convenient (but not mandatory) to have cython >= 0.17 installed for it.
        
        Testing
        -------
        
        To run the tests **after installation** run::
        
            python -m fisx.tests.testAll
        
        Example
        -------
        
        There is a `web application <http://fisxserver.esrf.fr>`_ using this library for calculating expected x-ray count rates.
        
        This piece of Python code shows how the library can be used via its python binding.
        
        .. code-block:: python
        
          from fisx import Elements
          from fisx import Material
          from fisx import Detector
          from fisx import XRF
        
          elementsInstance = Elements()
          elementsInstance.initializeAsPyMca()
          # After the slow initialization (to be made once), the rest is fairly fast.
          xrf = XRF()
          xrf.setBeam(16.0) # set incident beam as a single photon energy of 16 keV
          xrf.setBeamFilters([["Al1", 2.72, 0.11, 1.0]]) # Incident beam filters
          # Steel composition of Schoonjans et al, 2012 used to generate table I
          steel = {"C":  0.0445, 
                   "N":  0.04,
                   "Si": 0.5093,
                   "P":  0.02,
                   "S":  0.0175,
                   "V":  0.05,
                   "Cr":18.37,
                   "Mn": 1.619,
                   "Fe":64.314, # calculated by subtracting the sum of all other elements
                   "Co": 0.109,
                   "Ni":12.35,
                   "Cu": 0.175,
                   "As": 0.010670,
                   "Mo": 2.26,
                   "W":  0.11,
                   "Pb": 0.001}
          SRM_1155 = Material("SRM_1155", 1.0, 1.0)
          SRM_1155.setComposition(steel)
          elementsInstance.addMaterial(SRM_1155)
          xrf.setSample([["SRM_1155", 1.0, 1.0]]) # Sample, density and thickness
          xrf.setGeometry(45., 45.)               # Incident and fluorescent beam angles
          detector = Detector("Si1", 2.33, 0.035) # Detector Material, density, thickness
          detector.setActiveArea(0.50)            # Area and distance in consistent units
          detector.setDistance(2.1)               # expected cm2 and cm.
          xrf.setDetector(detector)
          Air = Material("Air", 0.0012048, 1.0)
          Air.setCompositionFromLists(["C1", "N1", "O1", "Ar1", "Kr1"],
                                      [0.0012048, 0.75527, 0.23178, 0.012827, 3.2e-06])
          elementsInstance.addMaterial(Air)
          xrf.setAttenuators([["Air", 0.0012048, 5.0, 1.0],
                              ["Be1", 1.848, 0.002, 1.0]]) # Attenuators
          fluo = xrf.getMultilayerFluorescence(["Cr K", "Fe K", "Ni K"],
                                               elementsInstance,
                                               secondary=2,
                                               useMassFractions=1)
          print("Element   Peak          Energy       Rate      Secondary  Tertiary")
          for key in fluo:
              for layer in fluo[key]:
                  peakList = list(fluo[key][layer].keys())
                  peakList.sort()
                  for peak in peakList:
                      # energy of the peak
                      energy = fluo[key][layer][peak]["energy"]
                      # expected measured rate
                      rate = fluo[key][layer][peak]["rate"]
                      # primary photons (no attenuation and no detector considered)
                      primary = fluo[key][layer][peak]["primary"]
                      # secondary photons (no attenuation and no detector considered)
                      secondary = fluo[key][layer][peak]["secondary"]
                      # tertiary photons (no attenuation and no detector considered)
                      tertiary = fluo[key][layer][peak].get("tertiary", 0.0)
                      # correction due to secondary excitation
                      enhancement2 = (primary + secondary) / primary
                      enhancement3 = (primary + secondary + tertiary) / primary
                      print("%s   %s    %.4f     %.3g     %.5g    %.5g" % \
                                         (key, peak + (13 - len(peak)) * " ", energy,
                                         rate, enhancement2, enhancement3))
        
        
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Programming Language :: C++
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Cython
Classifier: Environment :: Console
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: End Users/Desktop
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: Operating System :: Microsoft :: Windows
Classifier: Operating System :: Unix
Classifier: Operating System :: MacOS :: MacOS X
Classifier: Operating System :: POSIX
Classifier: Topic :: Scientific/Engineering :: Chemistry
Classifier: Topic :: Scientific/Engineering :: Physics