/usr/lib/python2.7/dist-packages/fisx-1.1.2.egg-info/PKG-INFO is in python-fisx 1.1.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | Metadata-Version: 1.1
Name: fisx
Version: 1.1.2
Summary: Quantitative X-Ray Fluorescence Analysis Support Library
Home-page: https://github.com/vasole/fisx
Author: V. Armando Solé
Author-email: sole@esrf.fr
License: MIT
Download-URL: https://github.com/vasole/fisx/archive/v1.1.2.tar.gz
Description: ====
fisx
====
Main development website: https://github.com/vasole/fisx
.. image:: https://travis-ci.org/vasole/fisx.svg?branch=master
:target: https://travis-ci.org/vasole/fisx
.. image:: https://ci.appveyor.com/api/projects/status/github/vasole/fisx?branch=master&svg=true
:target: https://ci.appveyor.com/project/vasole/fisx
This software library implements formulas to calculate, given an experimental setup, the expected x-ray fluorescence intensities. The library accounts for secondary and tertiary excitation, K, L and M shell emission lines and de-excitation cascade effects. The basic implementation is written in C++ and a Python binding is provided.
Account for secondary excitation is made via the reference:
D.K.G. de Boer, X-Ray Spectrometry 19 (1990) 145-154
with the correction mentioned in:
D.K.G. de Boer et al, X-Ray Spectrometry 22 (1993) 33-28
Tertiary excitation is accounted for via an appproximation.
The accuracy of the corrections has been tested against experimental data and Monte Carlo simulations.
License
-------
This code is relased under the MIT license as detailed in the LICENSE file.
Installation
------------
To install the library for Python just use ``pip install fisx``. If you want build the library for python use from the code source repository, just use one of the ``pip install .`` or the ``python setup.py install`` approaches. It is convenient (but not mandatory) to have cython >= 0.17 installed for it.
Testing
-------
To run the tests **after installation** run::
python -m fisx.tests.testAll
Example
-------
There is a `web application <http://fisxserver.esrf.fr>`_ using this library for calculating expected x-ray count rates.
This piece of Python code shows how the library can be used via its python binding.
.. code-block:: python
from fisx import Elements
from fisx import Material
from fisx import Detector
from fisx import XRF
elementsInstance = Elements()
elementsInstance.initializeAsPyMca()
# After the slow initialization (to be made once), the rest is fairly fast.
xrf = XRF()
xrf.setBeam(16.0) # set incident beam as a single photon energy of 16 keV
xrf.setBeamFilters([["Al1", 2.72, 0.11, 1.0]]) # Incident beam filters
# Steel composition of Schoonjans et al, 2012 used to generate table I
steel = {"C": 0.0445,
"N": 0.04,
"Si": 0.5093,
"P": 0.02,
"S": 0.0175,
"V": 0.05,
"Cr":18.37,
"Mn": 1.619,
"Fe":64.314, # calculated by subtracting the sum of all other elements
"Co": 0.109,
"Ni":12.35,
"Cu": 0.175,
"As": 0.010670,
"Mo": 2.26,
"W": 0.11,
"Pb": 0.001}
SRM_1155 = Material("SRM_1155", 1.0, 1.0)
SRM_1155.setComposition(steel)
elementsInstance.addMaterial(SRM_1155)
xrf.setSample([["SRM_1155", 1.0, 1.0]]) # Sample, density and thickness
xrf.setGeometry(45., 45.) # Incident and fluorescent beam angles
detector = Detector("Si1", 2.33, 0.035) # Detector Material, density, thickness
detector.setActiveArea(0.50) # Area and distance in consistent units
detector.setDistance(2.1) # expected cm2 and cm.
xrf.setDetector(detector)
Air = Material("Air", 0.0012048, 1.0)
Air.setCompositionFromLists(["C1", "N1", "O1", "Ar1", "Kr1"],
[0.0012048, 0.75527, 0.23178, 0.012827, 3.2e-06])
elementsInstance.addMaterial(Air)
xrf.setAttenuators([["Air", 0.0012048, 5.0, 1.0],
["Be1", 1.848, 0.002, 1.0]]) # Attenuators
fluo = xrf.getMultilayerFluorescence(["Cr K", "Fe K", "Ni K"],
elementsInstance,
secondary=2,
useMassFractions=1)
print("Element Peak Energy Rate Secondary Tertiary")
for key in fluo:
for layer in fluo[key]:
peakList = list(fluo[key][layer].keys())
peakList.sort()
for peak in peakList:
# energy of the peak
energy = fluo[key][layer][peak]["energy"]
# expected measured rate
rate = fluo[key][layer][peak]["rate"]
# primary photons (no attenuation and no detector considered)
primary = fluo[key][layer][peak]["primary"]
# secondary photons (no attenuation and no detector considered)
secondary = fluo[key][layer][peak]["secondary"]
# tertiary photons (no attenuation and no detector considered)
tertiary = fluo[key][layer][peak].get("tertiary", 0.0)
# correction due to secondary excitation
enhancement2 = (primary + secondary) / primary
enhancement3 = (primary + secondary + tertiary) / primary
print("%s %s %.4f %.3g %.5g %.5g" % \
(key, peak + (13 - len(peak)) * " ", energy,
rate, enhancement2, enhancement3))
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Programming Language :: C++
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Cython
Classifier: Environment :: Console
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: End Users/Desktop
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: Operating System :: Microsoft :: Windows
Classifier: Operating System :: Unix
Classifier: Operating System :: MacOS :: MacOS X
Classifier: Operating System :: POSIX
Classifier: Topic :: Scientific/Engineering :: Chemistry
Classifier: Topic :: Scientific/Engineering :: Physics
|