This file is indexed.

/usr/lib/python2.7/dist-packages/matplotlib/tests/test_colors.py is in python-matplotlib 2.0.0+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import six
import itertools
from distutils.version import LooseVersion as V

from nose.tools import assert_raises, assert_equal, assert_true

try:
    # this is not available in nose + py2.6
    from nose.tools import assert_sequence_equal
except ImportError:
    assert_sequence_equal = None

import numpy as np
from numpy.testing.utils import assert_array_equal, assert_array_almost_equal
from nose.plugins.skip import SkipTest

from matplotlib import cycler
import matplotlib
import matplotlib.colors as mcolors
import matplotlib.cm as cm
import matplotlib.colorbar as mcolorbar
import matplotlib.cbook as cbook
import matplotlib.pyplot as plt
from matplotlib.testing.decorators import (image_comparison,
                                           cleanup, knownfailureif)


def test_resample():
    """
    Github issue #6025 pointed to incorrect ListedColormap._resample;
    here we test the method for LinearSegmentedColormap as well.
    """
    n = 101
    colorlist = np.empty((n, 4), float)
    colorlist[:, 0] = np.linspace(0, 1, n)
    colorlist[:, 1] = 0.2
    colorlist[:, 2] = np.linspace(1, 0, n)
    colorlist[:, 3] = 0.7
    lsc = mcolors.LinearSegmentedColormap.from_list('lsc', colorlist)
    lc = mcolors.ListedColormap(colorlist)
    lsc3 = lsc._resample(3)
    lc3 = lc._resample(3)
    expected = np.array([[0.0, 0.2, 1.0, 0.7],
                         [0.5, 0.2, 0.5, 0.7],
                         [1.0, 0.2, 0.0, 0.7]], float)
    assert_array_almost_equal(lsc3([0, 0.5, 1]), expected)
    assert_array_almost_equal(lc3([0, 0.5, 1]), expected)


def test_colormap_endian():
    """
    Github issue #1005: a bug in putmask caused erroneous
    mapping of 1.0 when input from a non-native-byteorder
    array.
    """
    cmap = cm.get_cmap("jet")
    # Test under, over, and invalid along with values 0 and 1.
    a = [-0.5, 0, 0.5, 1, 1.5, np.nan]
    for dt in ["f2", "f4", "f8"]:
        anative = np.ma.masked_invalid(np.array(a, dtype=dt))
        aforeign = anative.byteswap().newbyteorder()
        #print(anative.dtype.isnative, aforeign.dtype.isnative)
        assert_array_equal(cmap(anative), cmap(aforeign))


def test_BoundaryNorm():
    """
    Github issue #1258: interpolation was failing with numpy
    1.7 pre-release.
    """

    boundaries = [0, 1.1, 2.2]
    vals = [-1, 0, 1, 2, 2.2, 4]

    # Without interpolation
    expected = [-1, 0, 0, 1, 2, 2]
    ncolors = len(boundaries) - 1
    bn = mcolors.BoundaryNorm(boundaries, ncolors)
    assert_array_equal(bn(vals), expected)

    # ncolors != len(boundaries) - 1 triggers interpolation
    expected = [-1, 0, 0, 2, 3, 3]
    ncolors = len(boundaries)
    bn = mcolors.BoundaryNorm(boundaries, ncolors)
    assert_array_equal(bn(vals), expected)

    # more boundaries for a third color
    boundaries = [0, 1, 2, 3]
    vals = [-1, 0.1, 1.1, 2.2, 4]
    ncolors = 5
    expected = [-1, 0, 2, 4, 5]
    bn = mcolors.BoundaryNorm(boundaries, ncolors)
    assert_array_equal(bn(vals), expected)

    # a scalar as input should not trigger an error and should return a scalar
    boundaries = [0, 1, 2]
    vals = [-1, 0.1, 1.1, 2.2]
    bn = mcolors.BoundaryNorm(boundaries, 2)
    expected = [-1, 0, 1, 2]
    for v, ex in zip(vals, expected):
        ret = bn(v)
        assert_true(isinstance(ret, six.integer_types))
        assert_array_equal(ret, ex)
        assert_array_equal(bn([v]), ex)

    # same with interp
    bn = mcolors.BoundaryNorm(boundaries, 3)
    expected = [-1, 0, 2, 3]
    for v, ex in zip(vals, expected):
        ret = bn(v)
        assert_true(isinstance(ret, six.integer_types))
        assert_array_equal(ret, ex)
        assert_array_equal(bn([v]), ex)

    # Clipping
    bn = mcolors.BoundaryNorm(boundaries, 3, clip=True)
    expected = [0, 0, 2, 2]
    for v, ex in zip(vals, expected):
        ret = bn(v)
        assert_true(isinstance(ret, six.integer_types))
        assert_array_equal(ret, ex)
        assert_array_equal(bn([v]), ex)

    # Masked arrays
    boundaries = [0, 1.1, 2.2]
    vals = np.ma.masked_invalid([-1., np.NaN, 0, 1.4, 9])

    # Without interpolation
    ncolors = len(boundaries) - 1
    bn = mcolors.BoundaryNorm(boundaries, ncolors)
    expected = np.ma.masked_array([-1, -99, 0, 1, 2], mask=[0, 1, 0, 0, 0])
    assert_array_equal(bn(vals), expected)

    # With interpolation
    bn = mcolors.BoundaryNorm(boundaries, len(boundaries))
    expected = np.ma.masked_array([-1, -99, 0, 2, 3], mask=[0, 1, 0, 0, 0])
    assert_array_equal(bn(vals), expected)

    # Non-trivial masked arrays
    vals = np.ma.masked_invalid([np.Inf, np.NaN])
    assert_true(np.all(bn(vals).mask))
    vals = np.ma.masked_invalid([np.Inf])
    assert_true(np.all(bn(vals).mask))


def test_LogNorm():
    """
    LogNorm ignored clip, now it has the same
    behavior as Normalize, e.g., values > vmax are bigger than 1
    without clip, with clip they are 1.
    """
    ln = mcolors.LogNorm(clip=True, vmax=5)
    assert_array_equal(ln([1, 6]), [0, 1.0])


def test_PowerNorm():
    a = np.array([0, 0.5, 1, 1.5], dtype=np.float)
    pnorm = mcolors.PowerNorm(1)
    norm = mcolors.Normalize()
    assert_array_almost_equal(norm(a), pnorm(a))

    a = np.array([-0.5, 0, 2, 4, 8], dtype=np.float)
    expected = [0, 0, 1/16, 1/4, 1]
    pnorm = mcolors.PowerNorm(2, vmin=0, vmax=8)
    assert_array_almost_equal(pnorm(a), expected)
    assert_equal(pnorm(a[0]), expected[0])
    assert_equal(pnorm(a[2]), expected[2])
    assert_array_almost_equal(a[1:], pnorm.inverse(pnorm(a))[1:])

    # Clip = True
    a = np.array([-0.5, 0, 1, 8, 16], dtype=np.float)
    expected = [0, 0, 0, 1, 1]
    pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=True)
    assert_array_almost_equal(pnorm(a), expected)
    assert_equal(pnorm(a[0]), expected[0])
    assert_equal(pnorm(a[-1]), expected[-1])

    # Clip = True at call time
    a = np.array([-0.5, 0, 1, 8, 16], dtype=np.float)
    expected = [0, 0, 0, 1, 1]
    pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=False)
    assert_array_almost_equal(pnorm(a, clip=True), expected)
    assert_equal(pnorm(a[0], clip=True), expected[0])
    assert_equal(pnorm(a[-1], clip=True), expected[-1])


def test_Normalize():
    norm = mcolors.Normalize()
    vals = np.arange(-10, 10, 1, dtype=np.float)
    _inverse_tester(norm, vals)
    _scalar_tester(norm, vals)
    _mask_tester(norm, vals)

    # Handle integer input correctly (don't overflow when computing max-min,
    # i.e. 127-(-128) here).
    vals = np.array([-128, 127], dtype=np.int8)
    norm = mcolors.Normalize(vals.min(), vals.max())
    assert_array_equal(np.asarray(norm(vals)), [0, 1])

    # Don't lose precision on longdoubles (float128 on Linux):
    # for array inputs...
    vals = np.array([1.2345678901, 9.8765432109], dtype=np.longdouble)
    norm = mcolors.Normalize(vals.min(), vals.max())
    assert_array_equal(np.asarray(norm(vals)), [0, 1])
    # and for scalar ones.
    eps = np.finfo(np.longdouble).resolution
    norm = plt.Normalize(1, 1 + 100 * eps)
    # This returns exactly 0.5 when longdouble is extended precision (80-bit),
    # but only a value close to it when it is quadruple precision (128-bit).
    assert 0 < norm(1 + 50 * eps) < 1


def test_SymLogNorm():
    """
    Test SymLogNorm behavior
    """
    norm = mcolors.SymLogNorm(3, vmax=5, linscale=1.2)
    vals = np.array([-30, -1, 2, 6], dtype=np.float)
    normed_vals = norm(vals)
    expected = [0., 0.53980074, 0.826991, 1.02758204]
    assert_array_almost_equal(normed_vals, expected)
    _inverse_tester(norm, vals)
    _scalar_tester(norm, vals)
    _mask_tester(norm, vals)

    # Ensure that specifying vmin returns the same result as above
    norm = mcolors.SymLogNorm(3, vmin=-30, vmax=5, linscale=1.2)
    normed_vals = norm(vals)
    assert_array_almost_equal(normed_vals, expected)


@cleanup
def test_SymLogNorm_colorbar():
    """
    Test un-called SymLogNorm in a colorbar.
    """
    norm = mcolors.SymLogNorm(0.1, vmin=-1, vmax=1, linscale=1)
    fig = plt.figure()
    cbar = mcolorbar.ColorbarBase(fig.add_subplot(111), norm=norm)
    plt.close(fig)


def _inverse_tester(norm_instance, vals):
    """
    Checks if the inverse of the given normalization is working.
    """
    assert_array_almost_equal(norm_instance.inverse(norm_instance(vals)), vals)


def _scalar_tester(norm_instance, vals):
    """
    Checks if scalars and arrays are handled the same way.
    Tests only for float.
    """
    scalar_result = [norm_instance(float(v)) for v in vals]
    assert_array_almost_equal(scalar_result, norm_instance(vals))


def _mask_tester(norm_instance, vals):
    """
    Checks mask handling
    """
    masked_array = np.ma.array(vals)
    masked_array[0] = np.ma.masked
    assert_array_equal(masked_array.mask, norm_instance(masked_array).mask)


@image_comparison(baseline_images=['levels_and_colors'],
                  extensions=['png'])
def test_cmap_and_norm_from_levels_and_colors():
    data = np.linspace(-2, 4, 49).reshape(7, 7)
    levels = [-1, 2, 2.5, 3]
    colors = ['red', 'green', 'blue', 'yellow', 'black']
    extend = 'both'
    cmap, norm = mcolors.from_levels_and_colors(levels, colors, extend=extend)

    ax = plt.axes()
    m = plt.pcolormesh(data, cmap=cmap, norm=norm)
    plt.colorbar(m)

    # Hide the axes labels (but not the colorbar ones, as they are useful)
    for lab in ax.get_xticklabels() + ax.get_yticklabels():
        lab.set_visible(False)


def test_cmap_and_norm_from_levels_and_colors2():
    levels = [-1, 2, 2.5, 3]
    colors = ['red', (0, 1, 0), 'blue', (0.5, 0.5, 0.5), (0.0, 0.0, 0.0, 1.0)]
    clr = mcolors.to_rgba_array(colors)
    bad = (0.1, 0.1, 0.1, 0.1)
    no_color = (0.0, 0.0, 0.0, 0.0)
    masked_value = 'masked_value'

    # Define the test values which are of interest.
    # Note: levels are lev[i] <= v < lev[i+1]
    tests = [('both', None, {-2: clr[0],
                             -1: clr[1],
                             2: clr[2],
                             2.25: clr[2],
                             3: clr[4],
                             3.5: clr[4],
                             masked_value: bad}),

             ('min', -1, {-2: clr[0],
                          -1: clr[1],
                          2: clr[2],
                          2.25: clr[2],
                          3: no_color,
                          3.5: no_color,
                          masked_value: bad}),

             ('max', -1, {-2: no_color,
                          -1: clr[0],
                          2: clr[1],
                          2.25: clr[1],
                          3: clr[3],
                          3.5: clr[3],
                          masked_value: bad}),

             ('neither', -2, {-2: no_color,
                              -1: clr[0],
                              2: clr[1],
                              2.25: clr[1],
                              3: no_color,
                              3.5: no_color,
                              masked_value: bad}),
             ]

    for extend, i1, cases in tests:
        cmap, norm = mcolors.from_levels_and_colors(levels, colors[0:i1],
                                                    extend=extend)
        cmap.set_bad(bad)
        for d_val, expected_color in cases.items():
            if d_val == masked_value:
                d_val = np.ma.array([1], mask=True)
            else:
                d_val = [d_val]
            assert_array_equal(expected_color, cmap(norm(d_val))[0],
                               'Wih extend={0!r} and data '
                               'value={1!r}'.format(extend, d_val))

    assert_raises(ValueError, mcolors.from_levels_and_colors, levels, colors)


def test_rgb_hsv_round_trip():
    for a_shape in [(500, 500, 3), (500, 3), (1, 3), (3,)]:
        np.random.seed(0)
        tt = np.random.random(a_shape)
        assert_array_almost_equal(tt,
            mcolors.hsv_to_rgb(mcolors.rgb_to_hsv(tt)))
        assert_array_almost_equal(tt,
            mcolors.rgb_to_hsv(mcolors.hsv_to_rgb(tt)))


@cleanup
def test_autoscale_masked():
    # Test for #2336. Previously fully masked data would trigger a ValueError.
    data = np.ma.masked_all((12, 20))
    plt.pcolor(data)
    plt.draw()


def test_colors_no_float():
    # Gray must be a string to distinguish 3-4 grays from RGB or RGBA.

    def gray_from_float_rgba():
        return mcolors.to_rgba(0.4)

    assert_raises(ValueError, gray_from_float_rgba)


@image_comparison(baseline_images=['light_source_shading_topo'],
                  extensions=['png'])
def test_light_source_topo_surface():
    """Shades a DEM using different v.e.'s and blend modes."""
    fname = cbook.get_sample_data('jacksboro_fault_dem.npz', asfileobj=False)
    dem = np.load(fname)
    elev = dem['elevation']
    # Get the true cellsize in meters for accurate vertical exaggeration
    #   Convert from decimal degrees to meters
    dx, dy = dem['dx'], dem['dy']
    dx = 111320.0 * dx * np.cos(dem['ymin'])
    dy = 111320.0 * dy
    dem.close()

    ls = mcolors.LightSource(315, 45)
    cmap = cm.gist_earth

    fig, axes = plt.subplots(nrows=3, ncols=3)
    for row, mode in zip(axes, ['hsv', 'overlay', 'soft']):
        for ax, ve in zip(row, [0.1, 1, 10]):
            rgb = ls.shade(elev, cmap, vert_exag=ve, dx=dx, dy=dy,
                           blend_mode=mode)
            ax.imshow(rgb)
            ax.set(xticks=[], yticks=[])


def test_light_source_shading_default():
    """Array comparison test for the default "hsv" blend mode. Ensure the
    default result doesn't change without warning."""
    y, x = np.mgrid[-1.2:1.2:8j, -1.2:1.2:8j]
    z = 10 * np.cos(x**2 + y**2)

    cmap = plt.cm.copper
    ls = mcolors.LightSource(315, 45)
    rgb = ls.shade(z, cmap)

    # Result stored transposed and rounded for for more compact display...
    expect = np.array(
        [[[0.00, 0.45, 0.90, 0.90, 0.82, 0.62, 0.28, 0.00],
          [0.45, 0.94, 0.99, 1.00, 1.00, 0.96, 0.65, 0.17],
          [0.90, 0.99, 1.00, 1.00, 1.00, 1.00, 0.94, 0.35],
          [0.90, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.49],
          [0.82, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.41],
          [0.62, 0.96, 1.00, 1.00, 1.00, 1.00, 0.90, 0.07],
          [0.28, 0.65, 0.94, 1.00, 1.00, 0.90, 0.35, 0.01],
          [0.00, 0.17, 0.35, 0.49, 0.41, 0.07, 0.01, 0.00]],

         [[0.00, 0.28, 0.59, 0.72, 0.62, 0.40, 0.18, 0.00],
          [0.28, 0.78, 0.93, 0.92, 0.83, 0.66, 0.39, 0.11],
          [0.59, 0.93, 0.99, 1.00, 0.92, 0.75, 0.50, 0.21],
          [0.72, 0.92, 1.00, 0.99, 0.93, 0.76, 0.51, 0.18],
          [0.62, 0.83, 0.92, 0.93, 0.87, 0.68, 0.42, 0.08],
          [0.40, 0.66, 0.75, 0.76, 0.68, 0.52, 0.23, 0.02],
          [0.18, 0.39, 0.50, 0.51, 0.42, 0.23, 0.00, 0.00],
          [0.00, 0.11, 0.21, 0.18, 0.08, 0.02, 0.00, 0.00]],

         [[0.00, 0.18, 0.38, 0.46, 0.39, 0.26, 0.11, 0.00],
          [0.18, 0.50, 0.70, 0.75, 0.64, 0.44, 0.25, 0.07],
          [0.38, 0.70, 0.91, 0.98, 0.81, 0.51, 0.29, 0.13],
          [0.46, 0.75, 0.98, 0.96, 0.84, 0.48, 0.22, 0.12],
          [0.39, 0.64, 0.81, 0.84, 0.71, 0.31, 0.11, 0.05],
          [0.26, 0.44, 0.51, 0.48, 0.31, 0.10, 0.03, 0.01],
          [0.11, 0.25, 0.29, 0.22, 0.11, 0.03, 0.00, 0.00],
          [0.00, 0.07, 0.13, 0.12, 0.05, 0.01, 0.00, 0.00]],

         [[1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00],
          [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00],
          [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00],
          [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00],
          [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00],
          [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00],
          [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00],
          [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00]]
        ]).T

    if (V(np.__version__) == V('1.9.0')):
        # Numpy 1.9.0 uses a 2. order algorithm on the edges by default
        # This was changed back again in 1.9.1
        expect = expect[1:-1, 1:-1, :]
        rgb = rgb[1:-1, 1:-1, :]

    assert_array_almost_equal(rgb, expect, decimal=2)


@knownfailureif((V(np.__version__) <= V('1.9.0')
                and V(np.__version__) >= V('1.7.0')))
# Numpy 1.9.1 fixed a bug in masked arrays which resulted in
# additional elements being masked when calculating the gradient thus
# the output is different with earlier numpy versions.
def test_light_source_masked_shading():
    """Array comparison test for a surface with a masked portion. Ensures that
    we don't wind up with "fringes" of odd colors around masked regions."""
    y, x = np.mgrid[-1.2:1.2:8j, -1.2:1.2:8j]
    z = 10 * np.cos(x**2 + y**2)

    z = np.ma.masked_greater(z, 9.9)

    cmap = plt.cm.copper
    ls = mcolors.LightSource(315, 45)
    rgb = ls.shade(z, cmap)

    # Result stored transposed and rounded for for more compact display...
    expect = np.array(
        [[[0.00, 0.46, 0.91, 0.91, 0.84, 0.64, 0.29, 0.00],
          [0.46, 0.96, 1.00, 1.00, 1.00, 0.97, 0.67, 0.18],
          [0.91, 1.00, 1.00, 1.00, 1.00, 1.00, 0.96, 0.36],
          [0.91, 1.00, 1.00, 0.00, 0.00, 1.00, 1.00, 0.51],
          [0.84, 1.00, 1.00, 0.00, 0.00, 1.00, 1.00, 0.44],
          [0.64, 0.97, 1.00, 1.00, 1.00, 1.00, 0.94, 0.09],
          [0.29, 0.67, 0.96, 1.00, 1.00, 0.94, 0.38, 0.01],
          [0.00, 0.18, 0.36, 0.51, 0.44, 0.09, 0.01, 0.00]],

         [[0.00, 0.29, 0.61, 0.75, 0.64, 0.41, 0.18, 0.00],
          [0.29, 0.81, 0.95, 0.93, 0.85, 0.68, 0.40, 0.11],
          [0.61, 0.95, 1.00, 0.78, 0.78, 0.77, 0.52, 0.22],
          [0.75, 0.93, 0.78, 0.00, 0.00, 0.78, 0.54, 0.19],
          [0.64, 0.85, 0.78, 0.00, 0.00, 0.78, 0.45, 0.08],
          [0.41, 0.68, 0.77, 0.78, 0.78, 0.55, 0.25, 0.02],
          [0.18, 0.40, 0.52, 0.54, 0.45, 0.25, 0.00, 0.00],
          [0.00, 0.11, 0.22, 0.19, 0.08, 0.02, 0.00, 0.00]],

         [[0.00, 0.19, 0.39, 0.48, 0.41, 0.26, 0.12, 0.00],
          [0.19, 0.52, 0.73, 0.78, 0.66, 0.46, 0.26, 0.07],
          [0.39, 0.73, 0.95, 0.50, 0.50, 0.53, 0.30, 0.14],
          [0.48, 0.78, 0.50, 0.00, 0.00, 0.50, 0.23, 0.12],
          [0.41, 0.66, 0.50, 0.00, 0.00, 0.50, 0.11, 0.05],
          [0.26, 0.46, 0.53, 0.50, 0.50, 0.11, 0.03, 0.01],
          [0.12, 0.26, 0.30, 0.23, 0.11, 0.03, 0.00, 0.00],
          [0.00, 0.07, 0.14, 0.12, 0.05, 0.01, 0.00, 0.00]],

         [[1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00],
          [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00],
          [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00],
          [1.00, 1.00, 1.00, 0.00, 0.00, 1.00, 1.00, 1.00],
          [1.00, 1.00, 1.00, 0.00, 0.00, 1.00, 1.00, 1.00],
          [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00],
          [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00],
          [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00]],
        ]).T

    assert_array_almost_equal(rgb, expect, decimal=2)


def test_light_source_hillshading():
    """Compare the current hillshading method against one that should be
    mathematically equivalent. Illuminates a cone from a range of angles."""

    def alternative_hillshade(azimuth, elev, z):
        illum = _sph2cart(*_azimuth2math(azimuth, elev))
        illum = np.array(illum)

        dy, dx = np.gradient(-z)
        dy = -dy
        dz = np.ones_like(dy)
        normals = np.dstack([dx, dy, dz])
        dividers = np.zeros_like(z)[..., None]
        for i, mat in enumerate(normals):
            for j, vec in enumerate(mat):
                dividers[i, j, 0] = np.linalg.norm(vec)
        normals /= dividers
        # once we drop support for numpy 1.7.x the above can be written as
        # normals /= np.linalg.norm(normals, axis=2)[..., None]
        # aviding the double loop.

        intensity = np.tensordot(normals, illum, axes=(2, 0))
        intensity -= intensity.min()
        intensity /= intensity.ptp()
        return intensity

    y, x = np.mgrid[5:0:-1, :5]
    z = -np.hypot(x - x.mean(), y - y.mean())

    for az, elev in itertools.product(range(0, 390, 30), range(0, 105, 15)):
        ls = mcolors.LightSource(az, elev)
        h1 = ls.hillshade(z)
        h2 = alternative_hillshade(az, elev, z)
        assert_array_almost_equal(h1, h2)


def test_light_source_planar_hillshading():
    """Ensure that the illumination intensity is correct for planar
    surfaces."""

    def plane(azimuth, elevation, x, y):
        """Create a plane whose normal vector is at the given azimuth and
        elevation."""
        theta, phi = _azimuth2math(azimuth, elevation)
        a, b, c = _sph2cart(theta, phi)
        z = -(a*x + b*y) / c
        return z

    def angled_plane(azimuth, elevation, angle, x, y):
        """Create a plane whose normal vector is at an angle from the given
        azimuth and elevation."""
        elevation = elevation + angle
        if elevation > 90:
            azimuth = (azimuth + 180) % 360
            elevation = (90 - elevation) % 90
        return plane(azimuth, elevation, x, y)

    y, x = np.mgrid[5:0:-1, :5]
    for az, elev in itertools.product(range(0, 390, 30), range(0, 105, 15)):
        ls = mcolors.LightSource(az, elev)

        # Make a plane at a range of angles to the illumination
        for angle in range(0, 105, 15):
            z = angled_plane(az, elev, angle, x, y)
            h = ls.hillshade(z)
            assert_array_almost_equal(h, np.cos(np.radians(angle)))


def test_color_names():
    assert mcolors.to_hex("blue") == "#0000ff"
    assert mcolors.to_hex("xkcd:blue") == "#0343df"
    assert mcolors.to_hex("tab:blue") == "#1f77b4"


def _sph2cart(theta, phi):
    x = np.cos(theta) * np.sin(phi)
    y = np.sin(theta) * np.sin(phi)
    z = np.cos(phi)
    return x, y, z


def _azimuth2math(azimuth, elevation):
    """Converts from clockwise-from-north and up-from-horizontal to
    mathematical conventions."""
    theta = np.radians((90 - azimuth) % 360)
    phi = np.radians(90 - elevation)
    return theta, phi


def test_pandas_iterable():
    try:
        import pandas as pd
    except ImportError:
        raise SkipTest("Pandas not installed")
    if assert_sequence_equal is None:
        raise SkipTest("nose lacks required function")
    # Using a list or series yields equivalent
    # color maps, i.e the series isn't seen as
    # a single color
    lst = ['red', 'blue', 'green']
    s = pd.Series(lst)
    cm1 = mcolors.ListedColormap(lst, N=5)
    cm2 = mcolors.ListedColormap(s, N=5)
    assert_sequence_equal(cm1.colors, cm2.colors)


@cleanup
def test_cn():
    matplotlib.rcParams['axes.prop_cycle'] = cycler('color',
                                                    ['blue', 'r'])
    assert mcolors.to_hex("C0") == '#0000ff'
    assert mcolors.to_hex("C1") == '#ff0000'

    matplotlib.rcParams['axes.prop_cycle'] = cycler('color',
                                                    ['xkcd:blue', 'r'])
    assert mcolors.to_hex("C0") == '#0343df'
    assert mcolors.to_hex("C1") == '#ff0000'

    matplotlib.rcParams['axes.prop_cycle'] = cycler('color', ['8e4585', 'r'])

    assert mcolors.to_hex("C0") == '#8e4585'
    # if '8e4585' gets parsed as a float before it gets detected as a hex
    # colour it will be interpreted as a very large number.
    # this mustn't happen.
    assert mcolors.to_rgb("C0")[0] != np.inf


def test_conversions():
    # to_rgba_array("none") returns a (0, 4) array.
    assert_array_equal(mcolors.to_rgba_array("none"), np.zeros((0, 4)))
    # alpha is properly set.
    assert_equal(mcolors.to_rgba((1, 1, 1), .5), (1, 1, 1, .5))
    assert_equal(mcolors.to_rgba(".1", .5), (.1, .1, .1, .5))
    # builtin round differs between py2 and py3.
    assert_equal(mcolors.to_hex((.7, .7, .7)), "#b2b2b2")
    # hex roundtrip.
    hex_color = "#1234abcd"
    assert_equal(mcolors.to_hex(mcolors.to_rgba(hex_color), keep_alpha=True),
                 hex_color)


def test_grey_gray():
    color_mapping = mcolors._colors_full_map
    for k in color_mapping.keys():
        if 'grey' in k:
            assert color_mapping[k] == color_mapping[k.replace('grey', 'gray')]
        if 'gray' in k:
            assert color_mapping[k] == color_mapping[k.replace('gray', 'grey')]


def test_tableau_order():
    dflt_cycle = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',
                  '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
                  '#bcbd22', '#17becf']

    assert list(mcolors.TABLEAU_COLORS.values()) == dflt_cycle


if __name__ == '__main__':
    import nose
    nose.runmodule(argv=['-s', '--with-doctest'], exit=False)