/usr/lib/python2.7/dist-packages/numexpr/necompiler.py is in python-numexpr 2.6.1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 | ###################################################################
# Numexpr - Fast numerical array expression evaluator for NumPy.
#
# License: MIT
# Author: See AUTHORS.txt
#
# See LICENSE.txt and LICENSES/*.txt for details about copyright and
# rights to use.
####################################################################
import __future__
import sys
import numpy
import threading
from numexpr import interpreter, expressions, use_vml, is_cpu_amd_intel
from numexpr.utils import CacheDict
# Declare a double type that does not exist in Python space
double = numpy.double
if sys.version_info[0] < 3:
int_ = int
long_ = long
else:
int_ = numpy.int32
long_ = numpy.int64
typecode_to_kind = {'b': 'bool', 'i': 'int', 'l': 'long', 'f': 'float',
'd': 'double', 'c': 'complex', 's': 'bytes', 'n': 'none'}
kind_to_typecode = {'bool': 'b', 'int': 'i', 'long': 'l', 'float': 'f',
'double': 'd', 'complex': 'c', 'bytes': 's', 'none': 'n'}
type_to_typecode = {bool: 'b', int_: 'i', long_: 'l', float: 'f',
double: 'd', complex: 'c', bytes: 's'}
type_to_kind = expressions.type_to_kind
kind_to_type = expressions.kind_to_type
default_type = kind_to_type[expressions.default_kind]
# VML functions that are implemented in numexpr
vml_functions = [
"div", # interp_body.cpp
"inv", # interp_body.cpp
"pow", # interp_body.cpp
# Keep the rest of this list in sync with the ones listed in functions.hpp
"sqrt",
"sin",
"cos",
"tan",
"arcsin",
"arccos",
"arctan",
"sinh",
"cosh",
"tanh",
"arcsinh",
"arccosh",
"arctanh",
"log",
"log1p",
"log10",
"exp",
"expm1",
"absolute",
"conjugate",
"arctan2",
"fmod",
]
# Final addtions for Python 3 (mainly for PyTables needs)
if sys.version_info[0] > 2:
typecode_to_kind['s'] = 'str'
kind_to_typecode['str'] = 's'
type_to_typecode[str] = 's'
scalar_constant_kinds = kind_to_typecode.keys()
class ASTNode(object):
"""Abstract Syntax Tree node.
Members:
astType -- type of node (op, constant, variable, raw, or alias)
astKind -- the type of the result (bool, float, etc.)
value -- value associated with this node.
An opcode, numerical value, a variable name, etc.
children -- the children below this node
reg -- the register assigned to the result for this node.
"""
cmpnames = ['astType', 'astKind', 'value', 'children']
def __init__(self, astType='generic', astKind='unknown',
value=None, children=()):
object.__init__(self)
self.astType = astType
self.astKind = astKind
self.value = value
self.children = tuple(children)
self.reg = None
def __eq__(self, other):
if self.astType == 'alias':
self = self.value
if other.astType == 'alias':
other = other.value
if not isinstance(other, ASTNode):
return False
for name in self.cmpnames:
if getattr(self, name) != getattr(other, name):
return False
return True
def __hash__(self):
if self.astType == 'alias':
self = self.value
return hash((self.astType, self.astKind, self.value, self.children))
def __str__(self):
return 'AST(%s, %s, %s, %s, %s)' % (self.astType, self.astKind,
self.value, self.children, self.reg)
def __repr__(self):
return '<AST object at %s>' % id(self)
def key(self):
return (self.astType, self.astKind, self.value, self.children)
def typecode(self):
return kind_to_typecode[self.astKind]
def postorderWalk(self):
for c in self.children:
for w in c.postorderWalk():
yield w
yield self
def allOf(self, *astTypes):
astTypes = set(astTypes)
for w in self.postorderWalk():
if w.astType in astTypes:
yield w
def expressionToAST(ex):
"""Take an expression tree made out of expressions.ExpressionNode,
and convert to an AST tree.
This is necessary as ExpressionNode overrides many methods to act
like a number.
"""
return ASTNode(ex.astType, ex.astKind, ex.value,
[expressionToAST(c) for c in ex.children])
def sigPerms(s):
"""Generate all possible signatures derived by upcasting the given
signature.
"""
codes = 'bilfdc'
if not s:
yield ''
elif s[0] in codes:
start = codes.index(s[0])
for x in codes[start:]:
for y in sigPerms(s[1:]):
yield x + y
elif s[0] == 's': # numbers shall not be cast to strings
for y in sigPerms(s[1:]):
yield 's' + y
else:
yield s
def typeCompileAst(ast):
"""Assign appropiate types to each node in the AST.
Will convert opcodes and functions to appropiate upcast version,
and add "cast" ops if needed.
"""
children = list(ast.children)
if ast.astType == 'op':
retsig = ast.typecode()
basesig = ''.join(x.typecode() for x in list(ast.children))
# Find some operation that will work on an acceptable casting of args.
for sig in sigPerms(basesig):
value = (ast.value + '_' + retsig + sig).encode('ascii')
if value in interpreter.opcodes:
break
else:
for sig in sigPerms(basesig):
funcname = (ast.value + '_' + retsig + sig).encode('ascii')
if funcname in interpreter.funccodes:
value = ('func_%sn' % (retsig + sig)).encode('ascii')
children += [ASTNode('raw', 'none',
interpreter.funccodes[funcname])]
break
else:
raise NotImplementedError(
"couldn't find matching opcode for '%s'"
% (ast.value + '_' + retsig + basesig))
# First just cast constants, then cast variables if necessary:
for i, (have, want) in enumerate(zip(basesig, sig)):
if have != want:
kind = typecode_to_kind[want]
if children[i].astType == 'constant':
children[i] = ASTNode('constant', kind, children[i].value)
else:
opname = "cast"
children[i] = ASTNode('op', kind, opname, [children[i]])
else:
value = ast.value
children = ast.children
return ASTNode(ast.astType, ast.astKind, value,
[typeCompileAst(c) for c in children])
class Register(object):
"""Abstraction for a register in the VM.
Members:
node -- the AST node this corresponds to
temporary -- True if this isn't an input or output
immediate -- not a register, but an immediate value
n -- the physical register number.
None if no number assigned yet.
"""
def __init__(self, astnode, temporary=False):
self.node = astnode
self.temporary = temporary
self.immediate = False
self.n = None
def __str__(self):
if self.temporary:
name = 'Temporary'
else:
name = 'Register'
return '%s(%s, %s, %s)' % (name, self.node.astType,
self.node.astKind, self.n,)
def __repr__(self):
return self.__str__()
class Immediate(Register):
"""Representation of an immediate (integer) operand, instead of
a register.
"""
def __init__(self, astnode):
Register.__init__(self, astnode)
self.immediate = True
def __str__(self):
return 'Immediate(%d)' % (self.node.value,)
def stringToExpression(s, types, context):
"""Given a string, convert it to a tree of ExpressionNode's.
"""
old_ctx = expressions._context.get_current_context()
try:
expressions._context.set_new_context(context)
# first compile to a code object to determine the names
if context.get('truediv', False):
flags = __future__.division.compiler_flag
else:
flags = 0
c = compile(s, '<expr>', 'eval', flags)
# make VariableNode's for the names
names = {}
for name in c.co_names:
if name == "None":
names[name] = None
elif name == "True":
names[name] = True
elif name == "False":
names[name] = False
else:
t = types.get(name, default_type)
names[name] = expressions.VariableNode(name, type_to_kind[t])
names.update(expressions.functions)
# now build the expression
ex = eval(c, names)
if expressions.isConstant(ex):
ex = expressions.ConstantNode(ex, expressions.getKind(ex))
elif not isinstance(ex, expressions.ExpressionNode):
raise TypeError("unsupported expression type: %s" % type(ex))
finally:
expressions._context.set_new_context(old_ctx)
return ex
def isReduction(ast):
prefixes = (b'sum_', b'prod_', b'min_', b'max_')
return any(ast.value.startswith(p) for p in prefixes)
def getInputOrder(ast, input_order=None):
"""Derive the input order of the variables in an expression.
"""
variables = {}
for a in ast.allOf('variable'):
variables[a.value] = a
variable_names = set(variables.keys())
if input_order:
if variable_names != set(input_order):
raise ValueError(
"input names (%s) don't match those found in expression (%s)"
% (input_order, variable_names))
ordered_names = input_order
else:
ordered_names = list(variable_names)
ordered_names.sort()
ordered_variables = [variables[v] for v in ordered_names]
return ordered_variables
def convertConstantToKind(x, kind):
# Exception for 'float' types that will return the NumPy float32 type
if kind == 'float':
return numpy.float32(x)
return kind_to_type[kind](x)
def getConstants(ast):
const_map = {}
for a in ast.allOf('constant'):
const_map[(a.astKind, a.value)] = a
ordered_constants = const_map.keys()
ordered_constants.sort()
constants_order = [const_map[v] for v in ordered_constants]
constants = [convertConstantToKind(a.value, a.astKind)
for a in constants_order]
return constants_order, constants
def sortNodesByOrder(nodes, order):
order_map = {}
for i, (_, v, _) in enumerate(order):
order_map[v] = i
dec_nodes = [(order_map[n.value], n) for n in nodes]
dec_nodes.sort()
return [a[1] for a in dec_nodes]
def assignLeafRegisters(inodes, registerMaker):
"""Assign new registers to each of the leaf nodes.
"""
leafRegisters = {}
for node in inodes:
key = node.key()
if key in leafRegisters:
node.reg = leafRegisters[key]
else:
node.reg = leafRegisters[key] = registerMaker(node)
def assignBranchRegisters(inodes, registerMaker):
"""Assign temporary registers to each of the branch nodes.
"""
for node in inodes:
node.reg = registerMaker(node, temporary=True)
def collapseDuplicateSubtrees(ast):
"""Common subexpression elimination.
"""
seen = {}
aliases = []
for a in ast.allOf('op'):
if a in seen:
target = seen[a]
a.astType = 'alias'
a.value = target
a.children = ()
aliases.append(a)
else:
seen[a] = a
# Set values and registers so optimizeTemporariesAllocation
# doesn't get confused
for a in aliases:
while a.value.astType == 'alias':
a.value = a.value.value
return aliases
def optimizeTemporariesAllocation(ast):
"""Attempt to minimize the number of temporaries needed, by
reusing old ones.
"""
nodes = [n for n in ast.postorderWalk() if n.reg.temporary]
users_of = dict((n.reg, set()) for n in nodes)
node_regs = dict((n, set(c.reg for c in n.children if c.reg.temporary))
for n in nodes)
if nodes and nodes[-1] is not ast:
nodes_to_check = nodes + [ast]
else:
nodes_to_check = nodes
for n in nodes_to_check:
for c in n.children:
if c.reg.temporary:
users_of[c.reg].add(n)
unused = dict([(tc, set()) for tc in scalar_constant_kinds])
for n in nodes:
for c in n.children:
reg = c.reg
if reg.temporary:
users = users_of[reg]
users.discard(n)
if not users:
unused[reg.node.astKind].add(reg)
if unused[n.astKind]:
reg = unused[n.astKind].pop()
users_of[reg] = users_of[n.reg]
n.reg = reg
def setOrderedRegisterNumbers(order, start):
"""Given an order of nodes, assign register numbers.
"""
for i, node in enumerate(order):
node.reg.n = start + i
return start + len(order)
def setRegisterNumbersForTemporaries(ast, start):
"""Assign register numbers for temporary registers, keeping track of
aliases and handling immediate operands.
"""
seen = 0
signature = ''
aliases = []
for node in ast.postorderWalk():
if node.astType == 'alias':
aliases.append(node)
node = node.value
if node.reg.immediate:
node.reg.n = node.value
continue
reg = node.reg
if reg.n is None:
reg.n = start + seen
seen += 1
signature += reg.node.typecode()
for node in aliases:
node.reg = node.value.reg
return start + seen, signature
def convertASTtoThreeAddrForm(ast):
"""Convert an AST to a three address form.
Three address form is (op, reg1, reg2, reg3), where reg1 is the
destination of the result of the instruction.
I suppose this should be called three register form, but three
address form is found in compiler theory.
"""
return [(node.value, node.reg) + tuple([c.reg for c in node.children])
for node in ast.allOf('op')]
def compileThreeAddrForm(program):
"""Given a three address form of the program, compile it a string that
the VM understands.
"""
def nToChr(reg):
if reg is None:
return b'\xff'
elif reg.n < 0:
raise ValueError("negative value for register number %s" % reg.n)
else:
if sys.version_info[0] < 3:
return chr(reg.n)
else:
# int.to_bytes is not available in Python < 3.2
#return reg.n.to_bytes(1, sys.byteorder)
return bytes([reg.n])
def quadrupleToString(opcode, store, a1=None, a2=None):
cop = chr(interpreter.opcodes[opcode]).encode('ascii')
cs = nToChr(store)
ca1 = nToChr(a1)
ca2 = nToChr(a2)
return cop + cs + ca1 + ca2
def toString(args):
while len(args) < 4:
args += (None,)
opcode, store, a1, a2 = args[:4]
s = quadrupleToString(opcode, store, a1, a2)
l = [s]
args = args[4:]
while args:
s = quadrupleToString(b'noop', *args[:3])
l.append(s)
args = args[3:]
return b''.join(l)
prog_str = b''.join([toString(t) for t in program])
return prog_str
context_info = [
('optimization', ('none', 'moderate', 'aggressive'), 'aggressive'),
('truediv', (False, True, 'auto'), 'auto')
]
def getContext(kwargs, frame_depth=1):
d = kwargs.copy()
context = {}
for name, allowed, default in context_info:
value = d.pop(name, default)
if value in allowed:
context[name] = value
else:
raise ValueError("'%s' must be one of %s" % (name, allowed))
if d:
raise ValueError("Unknown keyword argument '%s'" % d.popitem()[0])
if context['truediv'] == 'auto':
caller_globals = sys._getframe(frame_depth + 1).f_globals
context['truediv'] = \
caller_globals.get('division', None) == __future__.division
return context
def precompile(ex, signature=(), context={}):
"""Compile the expression to an intermediate form.
"""
types = dict(signature)
input_order = [name for (name, type_) in signature]
if isinstance(ex, (str, unicode)):
ex = stringToExpression(ex, types, context)
# the AST is like the expression, but the node objects don't have
# any odd interpretations
ast = expressionToAST(ex)
if ex.astType != 'op':
ast = ASTNode('op', value='copy', astKind=ex.astKind, children=(ast,))
ast = typeCompileAst(ast)
aliases = collapseDuplicateSubtrees(ast)
assignLeafRegisters(ast.allOf('raw'), Immediate)
assignLeafRegisters(ast.allOf('variable', 'constant'), Register)
assignBranchRegisters(ast.allOf('op'), Register)
# assign registers for aliases
for a in aliases:
a.reg = a.value.reg
input_order = getInputOrder(ast, input_order)
constants_order, constants = getConstants(ast)
if isReduction(ast):
ast.reg.temporary = False
optimizeTemporariesAllocation(ast)
ast.reg.temporary = False
r_output = 0
ast.reg.n = 0
r_inputs = r_output + 1
r_constants = setOrderedRegisterNumbers(input_order, r_inputs)
r_temps = setOrderedRegisterNumbers(constants_order, r_constants)
r_end, tempsig = setRegisterNumbersForTemporaries(ast, r_temps)
threeAddrProgram = convertASTtoThreeAddrForm(ast)
input_names = tuple([a.value for a in input_order])
signature = ''.join(type_to_typecode[types.get(x, default_type)]
for x in input_names)
return threeAddrProgram, signature, tempsig, constants, input_names
def NumExpr(ex, signature=(), **kwargs):
"""
Compile an expression built using E.<variable> variables to a function.
ex can also be specified as a string "2*a+3*b".
The order of the input variables and their types can be specified using the
signature parameter, which is a list of (name, type) pairs.
Returns a `NumExpr` object containing the compiled function.
"""
# NumExpr can be called either directly by the end-user, in which case
# kwargs need to be sanitized by getContext, or by evaluate,
# in which case kwargs are in already sanitized.
# In that case frame_depth is wrong (it should be 2) but it doesn't matter
# since it will not be used (because truediv='auto' has already been
# translated to either True or False).
context = getContext(kwargs, frame_depth=1)
threeAddrProgram, inputsig, tempsig, constants, input_names = \
precompile(ex, signature, context)
program = compileThreeAddrForm(threeAddrProgram)
return interpreter.NumExpr(inputsig.encode('ascii'),
tempsig.encode('ascii'),
program, constants, input_names)
def disassemble(nex):
"""
Given a NumExpr object, return a list which is the program disassembled.
"""
rev_opcodes = {}
for op in interpreter.opcodes:
rev_opcodes[interpreter.opcodes[op]] = op
r_constants = 1 + len(nex.signature)
r_temps = r_constants + len(nex.constants)
def getArg(pc, offset):
if sys.version_info[0] < 3:
arg = ord(nex.program[pc + offset])
op = rev_opcodes.get(ord(nex.program[pc]))
else:
arg = nex.program[pc + offset]
op = rev_opcodes.get(nex.program[pc])
try:
code = op.split(b'_')[1][offset - 1]
except IndexError:
return None
if sys.version_info[0] > 2:
# int.to_bytes is not available in Python < 3.2
#code = code.to_bytes(1, sys.byteorder)
code = bytes([code])
if arg == 255:
return None
if code != b'n':
if arg == 0:
return b'r0'
elif arg < r_constants:
return ('r%d[%s]' % (arg, nex.input_names[arg - 1])).encode('ascii')
elif arg < r_temps:
return ('c%d[%s]' % (arg, nex.constants[arg - r_constants])).encode('ascii')
else:
return ('t%d' % (arg,)).encode('ascii')
else:
return arg
source = []
for pc in range(0, len(nex.program), 4):
if sys.version_info[0] < 3:
op = rev_opcodes.get(ord(nex.program[pc]))
else:
op = rev_opcodes.get(nex.program[pc])
dest = getArg(pc, 1)
arg1 = getArg(pc, 2)
arg2 = getArg(pc, 3)
source.append((op, dest, arg1, arg2))
return source
def getType(a):
kind = a.dtype.kind
if kind == 'b':
return bool
if kind in 'iu':
if a.dtype.itemsize > 4:
return long_ # ``long`` is for integers of more than 32 bits
if kind == 'u' and a.dtype.itemsize == 4:
return long_ # use ``long`` here as an ``int`` is not enough
return int_
if kind == 'f':
if a.dtype.itemsize > 4:
return double # ``double`` is for floats of more than 32 bits
return float
if kind == 'c':
return complex
if kind == 'S':
return bytes
raise ValueError("unknown type %s" % a.dtype.name)
def getExprNames(text, context):
ex = stringToExpression(text, {}, context)
ast = expressionToAST(ex)
input_order = getInputOrder(ast, None)
#try to figure out if vml operations are used by expression
if not use_vml:
ex_uses_vml = False
else:
for node in ast.postorderWalk():
if node.astType == 'op' and node.value in vml_functions:
ex_uses_vml = True
break
else:
ex_uses_vml = False
return [a.value for a in input_order], ex_uses_vml
def getArguments(names, local_dict=None, global_dict=None):
"""Get the arguments based on the names."""
call_frame = sys._getframe(2)
if local_dict is None:
local_dict = call_frame.f_locals
if global_dict is None:
global_dict = call_frame.f_globals
arguments = []
for name in names:
try:
a = local_dict[name]
except KeyError:
a = global_dict[name]
arguments.append(numpy.asarray(a))
return arguments
# Dictionaries for caching variable names and compiled expressions
_names_cache = CacheDict(256)
_numexpr_cache = CacheDict(256)
_numexpr_last = {}
evaluate_lock = threading.Lock()
def evaluate(ex, local_dict=None, global_dict=None,
out=None, order='K', casting='safe', **kwargs):
"""Evaluate a simple array expression element-wise, using the new iterator.
ex is a string forming an expression, like "2*a+3*b". The values for "a"
and "b" will by default be taken from the calling function's frame
(through use of sys._getframe()). Alternatively, they can be specifed
using the 'local_dict' or 'global_dict' arguments.
Parameters
----------
local_dict : dictionary, optional
A dictionary that replaces the local operands in current frame.
global_dict : dictionary, optional
A dictionary that replaces the global operands in current frame.
out : NumPy array, optional
An existing array where the outcome is going to be stored. Care is
required so that this array has the same shape and type than the
actual outcome of the computation. Useful for avoiding unnecessary
new array allocations.
order : {'C', 'F', 'A', or 'K'}, optional
Controls the iteration order for operands. 'C' means C order, 'F'
means Fortran order, 'A' means 'F' order if all the arrays are
Fortran contiguous, 'C' order otherwise, and 'K' means as close to
the order the array elements appear in memory as possible. For
efficient computations, typically 'K'eep order (the default) is
desired.
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
Controls what kind of data casting may occur when making a copy or
buffering. Setting this to 'unsafe' is not recommended, as it can
adversely affect accumulations.
* 'no' means the data types should not be cast at all.
* 'equiv' means only byte-order changes are allowed.
* 'safe' means only casts which can preserve values are allowed.
* 'same_kind' means only safe casts or casts within a kind,
like float64 to float32, are allowed.
* 'unsafe' means any data conversions may be done.
"""
global _numexpr_last
if not isinstance(ex, (str, unicode)):
raise ValueError("must specify expression as a string")
# Get the names for this expression
context = getContext(kwargs, frame_depth=1)
expr_key = (ex, tuple(sorted(context.items())))
if expr_key not in _names_cache:
_names_cache[expr_key] = getExprNames(ex, context)
names, ex_uses_vml = _names_cache[expr_key]
arguments = getArguments(names, local_dict, global_dict)
# Create a signature
signature = [(name, getType(arg)) for (name, arg) in
zip(names, arguments)]
# Look up numexpr if possible.
numexpr_key = expr_key + (tuple(signature),)
try:
compiled_ex = _numexpr_cache[numexpr_key]
except KeyError:
compiled_ex = _numexpr_cache[numexpr_key] = \
NumExpr(ex, signature, **context)
kwargs = {'out': out, 'order': order, 'casting': casting,
'ex_uses_vml': ex_uses_vml}
_numexpr_last = dict(ex=compiled_ex, argnames=names, kwargs=kwargs)
with evaluate_lock:
return compiled_ex(*arguments, **kwargs)
def re_evaluate(local_dict=None):
"""Re-evaluate the previous executed array expression without any check.
This is meant for accelerating loops that are re-evaluating the same
expression repeatedly without changing anything else than the operands.
If unsure, use evaluate() which is safer.
Parameters
----------
local_dict : dictionary, optional
A dictionary that replaces the local operands in current frame.
"""
try:
compiled_ex = _numexpr_last['ex']
except KeyError:
raise RuntimeError("not a previous evaluate() execution found")
argnames = _numexpr_last['argnames']
args = getArguments(argnames, local_dict)
kwargs = _numexpr_last['kwargs']
with evaluate_lock:
return compiled_ex(*args, **kwargs)
|