This file is indexed.

/usr/lib/python2.7/dist-packages/openturns/classification.py is in python-openturns 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# This file was automatically generated by SWIG (http://www.swig.org).
# Version 3.0.7
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.




"""
Classification algorithms.
"""


from sys import version_info
if version_info >= (2, 6, 0):
    def swig_import_helper():
        from os.path import dirname
        import imp
        fp = None
        try:
            fp, pathname, description = imp.find_module('_classification', [dirname(__file__)])
        except ImportError:
            import _classification
            return _classification
        if fp is not None:
            try:
                _mod = imp.load_module('_classification', fp, pathname, description)
            finally:
                fp.close()
            return _mod
    _classification = swig_import_helper()
    del swig_import_helper
else:
    import _classification
del version_info
try:
    _swig_property = property
except NameError:
    pass  # Python < 2.2 doesn't have 'property'.


def _swig_setattr_nondynamic(self, class_type, name, value, static=1):
    if (name == "thisown"):
        return self.this.own(value)
    if (name == "this"):
        if type(value).__name__ == 'SwigPyObject':
            self.__dict__[name] = value
            return
    method = class_type.__swig_setmethods__.get(name, None)
    if method:
        return method(self, value)
    if (not static):
        if _newclass:
            object.__setattr__(self, name, value)
        else:
            self.__dict__[name] = value
    else:
        raise AttributeError("You cannot add attributes to %s" % self)


def _swig_setattr(self, class_type, name, value):
    return _swig_setattr_nondynamic(self, class_type, name, value, 0)


def _swig_getattr_nondynamic(self, class_type, name, static=1):
    if (name == "thisown"):
        return self.this.own()
    method = class_type.__swig_getmethods__.get(name, None)
    if method:
        return method(self)
    if (not static):
        return object.__getattr__(self, name)
    else:
        raise AttributeError(name)

def _swig_getattr(self, class_type, name):
    return _swig_getattr_nondynamic(self, class_type, name, 0)


def _swig_repr(self):
    try:
        strthis = "proxy of " + self.this.__repr__()
    except:
        strthis = ""
    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)

try:
    _object = object
    _newclass = 1
except AttributeError:
    class _object:
        pass
    _newclass = 0


class SwigPyIterator(_object):
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)

    def __init__(self, *args, **kwargs):
        raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _classification.delete_SwigPyIterator
    __del__ = lambda self: None

    def value(self):
        return _classification.SwigPyIterator_value(self)

    def incr(self, n=1):
        return _classification.SwigPyIterator_incr(self, n)

    def decr(self, n=1):
        return _classification.SwigPyIterator_decr(self, n)

    def distance(self, x):
        return _classification.SwigPyIterator_distance(self, x)

    def equal(self, x):
        return _classification.SwigPyIterator_equal(self, x)

    def copy(self):
        return _classification.SwigPyIterator_copy(self)

    def next(self):
        return _classification.SwigPyIterator_next(self)

    def __next__(self):
        return _classification.SwigPyIterator___next__(self)

    def previous(self):
        return _classification.SwigPyIterator_previous(self)

    def advance(self, n):
        return _classification.SwigPyIterator_advance(self, n)

    def __eq__(self, x):
        return _classification.SwigPyIterator___eq__(self, x)

    def __ne__(self, x):
        return _classification.SwigPyIterator___ne__(self, x)

    def __iadd__(self, n):
        return _classification.SwigPyIterator___iadd__(self, n)

    def __isub__(self, n):
        return _classification.SwigPyIterator___isub__(self, n)

    def __add__(self, n):
        return _classification.SwigPyIterator___add__(self, n)

    def __sub__(self, *args):
        return _classification.SwigPyIterator___sub__(self, *args)
    def __iter__(self):
        return self
SwigPyIterator_swigregister = _classification.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)


_classification.GCC_VERSION_swigconstant(_classification)
GCC_VERSION = _classification.GCC_VERSION

class TestFailed:
    """TestFailed is used to raise an uniform exception in tests."""

    __type = "TestFailed"

    def __init__(self, reason=""):
        self.reason = reason

    def type(self):
        return TestFailed.__type

    def what(self):
        return self.reason

    def __str__(self):
        return TestFailed.__type + ": " + self.reason

    def __lshift__(self, ch):
        self.reason += ch
        return self

import openturns.base
import openturns.common
import openturns.typ
import openturns.statistics
import openturns.graph
import openturns.func
import openturns.geom
import openturns.diff
import openturns.optim
import openturns.solver
import openturns.algo
import openturns.experiment
import openturns.model_copula
import openturns.dist_bundle1
import openturns.dist_bundle2
class MixtureClassifier(openturns.algo.ClassifierImplementation):
    """
    Particular classifier based on a mixture distribution.

    Available constructors:
        MixtureClassifier(*mixtDist*)

    Parameters
    ----------
    mixtDist : :class:`~openturns.Mixture`
        A mixture distribution.

    See also
    --------
    Classifier, ExpertMixture

    Notes
    -----
    This implements a mixture classifier which is a particular classifier based on
    a mixture distribution:

    .. math::

        p( \\vect{x} ) = \\sum_{i=1}^N w_i p_i ( \\vect{x} )

    The classifier proposes :math:`N` classes. The rule to assign a point 
    :math:`\\vect{x}` to a class :math:`i` is defined as follows: 

    .. math::

        i = \\argmax_k \\log w_k p_k( \\vect{x} )

    See useful methods :meth:`classify` and :meth:`grade`.
    """
    __swig_setmethods__ = {}
    for _s in [openturns.algo.ClassifierImplementation]:
        __swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, MixtureClassifier, name, value)
    __swig_getmethods__ = {}
    for _s in [openturns.algo.ClassifierImplementation]:
        __swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
    __getattr__ = lambda self, name: _swig_getattr(self, MixtureClassifier, name)

    def getClassName(self):
        """
        Accessor to the object's name.

        Returns
        -------
        class_name : str
            The object class name (`object.__class__.__name__`).
        """
        return _classification.MixtureClassifier_getClassName(self)


    def __repr__(self):
        return _classification.MixtureClassifier___repr__(self)

    def classify(self, inP):
        """
        Classify points according to the classifier.

        **Available usages**:

            classify(*inputPoint*)

            classify(*inputSample*)

        Parameters
        ----------
        inputPoint : sequence of float
            A point to classify.
        inputSample : 2-d a sequence of float
            A set of point to classify.

        Notes
        -----
        The classifier proposes :math:`N` classes where :math:`N` is the dimension of
        the mixture distribution *mixtDist*. The rule to assign a point :math:`\\vect{x}`
        to a class :math:`i` is defined as follows: 

        .. math::

            i = \\argmax_k \\log w_k p_k( \\vect{x} )

        In the first usage, it returns an integer which corresponds to the class where
        *inputPoint* has been assigned.

        In the second usage, it returns an :class:`~openturns.Indices` that collects the
        class of each point of *inputSample*.
        """
        return _classification.MixtureClassifier_classify(self, inP)


    def grade(self, inP, outC):
        """
        Grade points according to the classifier.

        **Available usages**:

            grade(*inputPoint, k*)

            grade(*inputSample, classList*)

        Parameters
        ----------
        inputPoint : sequence of float
            A point to grade.
        inputSample : 2-d a sequence of float
            A set of point to grade.
        k : integer
            The class number.
        classList : sequence of integer
            The list of class number.

        Notes
        -----
        The grade of :math:`\\vect{x}` with respect to the class *k* is
        :math:`log w_k p_k ( \\vect{x} )`.

        In the first usage, it returns a real that grades *inputPoint* with respect to
        the class *k*. The greatest, the best.

        In the second usage, it returns an :class:`~openturns.Indices` that collects the
        grades of the :math:`i^{th}` point of *inputSample* with respect to the
        :math:`i^{th}` class of *classList*.
        """
        return _classification.MixtureClassifier_grade(self, inP, outC)


    def getMixture(self):
        """
        Accessor to the mixture distribution.

        Returns
        -------
        mixtDist : :class:`~openturns.Mixture`
            The mixture distribution.
        """
        return _classification.MixtureClassifier_getMixture(self)


    def setMixture(self, mixture):
        """
        Accessor to the mixture distribution.

        Parameters
        ----------
        mixtDist : :class:`~openturns.Mixture`
            The mixture distribution.
        """
        return _classification.MixtureClassifier_setMixture(self, mixture)


    def getDimension(self):
        """
        Accessor to the dimension.

        Returns
        -------
        dim : integer
            The dimension of the classifier.
        """
        return _classification.MixtureClassifier_getDimension(self)


    def __init__(self, *args):
        this = _classification.new_MixtureClassifier(*args)
        try:
            self.this.append(this)
        except:
            self.this = this
    __swig_destroy__ = _classification.delete_MixtureClassifier
    __del__ = lambda self: None
MixtureClassifier_swigregister = _classification.MixtureClassifier_swigregister
MixtureClassifier_swigregister(MixtureClassifier)

# This file is compatible with both classic and new-style classes.