/usr/lib/python2.7/dist-packages/openturns/classification.py is in python-openturns 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 3.0.7
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
"""
Classification algorithms.
"""
from sys import version_info
if version_info >= (2, 6, 0):
def swig_import_helper():
from os.path import dirname
import imp
fp = None
try:
fp, pathname, description = imp.find_module('_classification', [dirname(__file__)])
except ImportError:
import _classification
return _classification
if fp is not None:
try:
_mod = imp.load_module('_classification', fp, pathname, description)
finally:
fp.close()
return _mod
_classification = swig_import_helper()
del swig_import_helper
else:
import _classification
del version_info
try:
_swig_property = property
except NameError:
pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self, class_type, name, value, static=1):
if (name == "thisown"):
return self.this.own(value)
if (name == "this"):
if type(value).__name__ == 'SwigPyObject':
self.__dict__[name] = value
return
method = class_type.__swig_setmethods__.get(name, None)
if method:
return method(self, value)
if (not static):
if _newclass:
object.__setattr__(self, name, value)
else:
self.__dict__[name] = value
else:
raise AttributeError("You cannot add attributes to %s" % self)
def _swig_setattr(self, class_type, name, value):
return _swig_setattr_nondynamic(self, class_type, name, value, 0)
def _swig_getattr_nondynamic(self, class_type, name, static=1):
if (name == "thisown"):
return self.this.own()
method = class_type.__swig_getmethods__.get(name, None)
if method:
return method(self)
if (not static):
return object.__getattr__(self, name)
else:
raise AttributeError(name)
def _swig_getattr(self, class_type, name):
return _swig_getattr_nondynamic(self, class_type, name, 0)
def _swig_repr(self):
try:
strthis = "proxy of " + self.this.__repr__()
except:
strthis = ""
return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
try:
_object = object
_newclass = 1
except AttributeError:
class _object:
pass
_newclass = 0
class SwigPyIterator(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
def __init__(self, *args, **kwargs):
raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _classification.delete_SwigPyIterator
__del__ = lambda self: None
def value(self):
return _classification.SwigPyIterator_value(self)
def incr(self, n=1):
return _classification.SwigPyIterator_incr(self, n)
def decr(self, n=1):
return _classification.SwigPyIterator_decr(self, n)
def distance(self, x):
return _classification.SwigPyIterator_distance(self, x)
def equal(self, x):
return _classification.SwigPyIterator_equal(self, x)
def copy(self):
return _classification.SwigPyIterator_copy(self)
def next(self):
return _classification.SwigPyIterator_next(self)
def __next__(self):
return _classification.SwigPyIterator___next__(self)
def previous(self):
return _classification.SwigPyIterator_previous(self)
def advance(self, n):
return _classification.SwigPyIterator_advance(self, n)
def __eq__(self, x):
return _classification.SwigPyIterator___eq__(self, x)
def __ne__(self, x):
return _classification.SwigPyIterator___ne__(self, x)
def __iadd__(self, n):
return _classification.SwigPyIterator___iadd__(self, n)
def __isub__(self, n):
return _classification.SwigPyIterator___isub__(self, n)
def __add__(self, n):
return _classification.SwigPyIterator___add__(self, n)
def __sub__(self, *args):
return _classification.SwigPyIterator___sub__(self, *args)
def __iter__(self):
return self
SwigPyIterator_swigregister = _classification.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)
_classification.GCC_VERSION_swigconstant(_classification)
GCC_VERSION = _classification.GCC_VERSION
class TestFailed:
"""TestFailed is used to raise an uniform exception in tests."""
__type = "TestFailed"
def __init__(self, reason=""):
self.reason = reason
def type(self):
return TestFailed.__type
def what(self):
return self.reason
def __str__(self):
return TestFailed.__type + ": " + self.reason
def __lshift__(self, ch):
self.reason += ch
return self
import openturns.base
import openturns.common
import openturns.typ
import openturns.statistics
import openturns.graph
import openturns.func
import openturns.geom
import openturns.diff
import openturns.optim
import openturns.solver
import openturns.algo
import openturns.experiment
import openturns.model_copula
import openturns.dist_bundle1
import openturns.dist_bundle2
class MixtureClassifier(openturns.algo.ClassifierImplementation):
"""
Particular classifier based on a mixture distribution.
Available constructors:
MixtureClassifier(*mixtDist*)
Parameters
----------
mixtDist : :class:`~openturns.Mixture`
A mixture distribution.
See also
--------
Classifier, ExpertMixture
Notes
-----
This implements a mixture classifier which is a particular classifier based on
a mixture distribution:
.. math::
p( \\vect{x} ) = \\sum_{i=1}^N w_i p_i ( \\vect{x} )
The classifier proposes :math:`N` classes. The rule to assign a point
:math:`\\vect{x}` to a class :math:`i` is defined as follows:
.. math::
i = \\argmax_k \\log w_k p_k( \\vect{x} )
See useful methods :meth:`classify` and :meth:`grade`.
"""
__swig_setmethods__ = {}
for _s in [openturns.algo.ClassifierImplementation]:
__swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
__setattr__ = lambda self, name, value: _swig_setattr(self, MixtureClassifier, name, value)
__swig_getmethods__ = {}
for _s in [openturns.algo.ClassifierImplementation]:
__swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
__getattr__ = lambda self, name: _swig_getattr(self, MixtureClassifier, name)
def getClassName(self):
"""
Accessor to the object's name.
Returns
-------
class_name : str
The object class name (`object.__class__.__name__`).
"""
return _classification.MixtureClassifier_getClassName(self)
def __repr__(self):
return _classification.MixtureClassifier___repr__(self)
def classify(self, inP):
"""
Classify points according to the classifier.
**Available usages**:
classify(*inputPoint*)
classify(*inputSample*)
Parameters
----------
inputPoint : sequence of float
A point to classify.
inputSample : 2-d a sequence of float
A set of point to classify.
Notes
-----
The classifier proposes :math:`N` classes where :math:`N` is the dimension of
the mixture distribution *mixtDist*. The rule to assign a point :math:`\\vect{x}`
to a class :math:`i` is defined as follows:
.. math::
i = \\argmax_k \\log w_k p_k( \\vect{x} )
In the first usage, it returns an integer which corresponds to the class where
*inputPoint* has been assigned.
In the second usage, it returns an :class:`~openturns.Indices` that collects the
class of each point of *inputSample*.
"""
return _classification.MixtureClassifier_classify(self, inP)
def grade(self, inP, outC):
"""
Grade points according to the classifier.
**Available usages**:
grade(*inputPoint, k*)
grade(*inputSample, classList*)
Parameters
----------
inputPoint : sequence of float
A point to grade.
inputSample : 2-d a sequence of float
A set of point to grade.
k : integer
The class number.
classList : sequence of integer
The list of class number.
Notes
-----
The grade of :math:`\\vect{x}` with respect to the class *k* is
:math:`log w_k p_k ( \\vect{x} )`.
In the first usage, it returns a real that grades *inputPoint* with respect to
the class *k*. The greatest, the best.
In the second usage, it returns an :class:`~openturns.Indices` that collects the
grades of the :math:`i^{th}` point of *inputSample* with respect to the
:math:`i^{th}` class of *classList*.
"""
return _classification.MixtureClassifier_grade(self, inP, outC)
def getMixture(self):
"""
Accessor to the mixture distribution.
Returns
-------
mixtDist : :class:`~openturns.Mixture`
The mixture distribution.
"""
return _classification.MixtureClassifier_getMixture(self)
def setMixture(self, mixture):
"""
Accessor to the mixture distribution.
Parameters
----------
mixtDist : :class:`~openturns.Mixture`
The mixture distribution.
"""
return _classification.MixtureClassifier_setMixture(self, mixture)
def getDimension(self):
"""
Accessor to the dimension.
Returns
-------
dim : integer
The dimension of the classifier.
"""
return _classification.MixtureClassifier_getDimension(self)
def __init__(self, *args):
this = _classification.new_MixtureClassifier(*args)
try:
self.this.append(this)
except:
self.this = this
__swig_destroy__ = _classification.delete_MixtureClassifier
__del__ = lambda self: None
MixtureClassifier_swigregister = _classification.MixtureClassifier_swigregister
MixtureClassifier_swigregister(MixtureClassifier)
# This file is compatible with both classic and new-style classes.
|