/usr/lib/python2.7/dist-packages/pebl/data.py is in python-pebl 1.0.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 | """Classes and functions for working with datasets."""
from __future__ import with_statement
import re
import copy
from itertools import groupby
import numpy as N
from pebl.util import *
from pebl import discretizer
from pebl import config
#
# Module parameters
#
_pfilename = config.StringParameter(
'data.filename',
'File to read data from.',
config.fileexists(),
)
_ptext = config.StringParameter(
'data.text',
'The text of a dataset included in config file.',
default=''
)
_pdiscretize = config.IntParameter(
'data.discretize',
'Number of bins used to discretize data. Specify 0 to indicate that '+\
'data should not be discretized.',
default=0
)
#
# Exceptions
#
class ParsingError(Exception):
"""Error encountered while parsing an ill-formed datafile."""
pass
class IncorrectArityError(Exception):
"""Error encountered when the datafile speifies an incorrect variable arity.
If variable arity is specified, it should be greater than the number of
unique observation values for the variable.
"""
def __init__(self, errors):
self.errors = errors
def __repr__(self):
msg = "Incorrect arity specified for some variables.\n"
for v,uniquevals in errors:
msg += "Variable %s has arity of %d but %d unique values.\n" % \
(v.name, v.arity, uniquevals)
class ClassVariableError(Exception):
"""Error with a class variable."""
msg = """Data for class variables must include only the labels specified in
the variable annotation."""
#
# Variables and Samples
#
class Annotation(object):
"""Additional information about a sample or variable."""
def __init__(self, name, *args):
# *args is for subclasses
self.name = str(name)
def __repr__(self):
return "<%s: %s>" % (self.__class__.__name__, self.name)
class Sample(Annotation):
"""Additional information about a sample."""
pass
class Variable(Annotation):
"""Additional information about a variable."""
arity = -1
class ContinuousVariable(Variable):
"""A variable from a continuous domain."""
def __init__(self, name, param):
self.name = str(name)
class DiscreteVariable(Variable):
"""A variable from a discrete domain."""
def __init__(self, name, param):
self.name = str(name)
self.arity = int(param)
class ClassVariable(DiscreteVariable):
"""A labeled, discrete variable."""
def __init__(self, name, param):
self.name = str(name)
self.labels = [l.strip() for l in param.split(',')]
self.label2int = dict((l,i) for i,l in enumerate(self.labels))
self.arity = len(self.labels)
#
# Main class for dataset
#
class Dataset(object):
def __init__(self, observations, missing=None, interventions=None,
variables=None, samples=None, skip_stats=False):
"""Create a pebl Dataset instance.
A Dataset consists of the following data structures which are all
numpy.ndarray instances:
* observations: a 2D matrix of observed values.
- dimension 1 is over samples, dimension 2 is over variables.
- observations[i,j] is the observed value for jth variable in the ith
sample.
* missing: a 2D binary mask for missing values
- missing[i,j] = 1 IFF observation[i,j] is missing
* interventions: a 2D binary mask for interventions
- interventions[i,j] = 1 IFF the jth variable was intervened upon in
the ith sample.
* variables,samples: 1D array of variable or sample annotations
This class provides a few public methods to manipulate datasets; one can
also use numpy functions/methods directly.
Required/Default values:
* The only required argument is observations (a 2D numpy array).
* If missing or interventions are not specified, they are assumed to
be all zeros (no missing values and no interventions).
* If variables or samples are not specified, appropriate Variable or
Sample annotations are created with only the name attribute.
Note:
If you alter Dataset.interventions or Dataset.missing, you must
call Dataset._calc_stats(). This is a terrible hack but it speeds
up pebl when used with datasets without interventions or missing
values (a common case).
"""
self.observations = observations
self.missing = missing
self.interventions = interventions
self.variables = variables
self.samples = samples
# With a numpy array X, we can't do 'if not X' to check the
# truth value because it raises an exception. So, we must use the
# non-pythonic 'if X is None'
obs = observations
if missing is None:
self.missing = N.zeros(obs.shape, dtype=bool)
if interventions is None:
self.interventions = N.zeros(obs.shape, dtype=bool)
if variables is None:
self.variables = N.array([Variable(str(i)) for i in xrange(obs.shape[1])])
self._guess_arities()
if samples is None:
self.samples = N.array([Sample(str(i)) for i in xrange(obs.shape[0])])
if not skip_stats:
self._calc_stats()
#
# public methods
#
def subset(self, variables=None, samples=None):
"""Returns a subset of the dataset (and metadata).
Specify the variables and samples for creating a subset of the data.
variables and samples should be a list of ids. If not specified, it is
assumed to be all variables or samples.
Some examples:
- d.subset([3], [4])
- d.subset([3,1,2])
- d.subset(samples=[5,2,7,1])
Note: order matters! d.subset([3,1,2]) != d.subset([1,2,3])
"""
variables = variables if variables is not None else range(self.variables.size)
samples = samples if samples is not None else range(self.samples.size)
skip_stats = not (self.has_interventions or self.has_missing)
d = Dataset(
self.observations[N.ix_(samples,variables)],
self.missing[N.ix_(samples,variables)],
self.interventions[N.ix_(samples,variables)],
self.variables[variables],
self.samples[samples],
skip_stats = skip_stats
)
# if self does not have interventions or missing, the subset can't.
if skip_stats:
d._has_interventions = False
d._has_missing = False
return d
def _subset_ni_fast(self, variables):
ds = _FastDataset.__new__(_FastDataset)
if not self.has_interventions:
ds.observations = self.observations[:,variables]
ds.samples = self.samples
else:
samples = N.where(self.interventions[:,variables[0]] == False)[0]
ds.observations = self.observations[samples][:,variables]
ds.samples = self.samples[samples]
ds.variables = self.variables[variables]
return ds
# TODO: test
def subset_byname(self, variables=None, samples=None):
"""Returns a subset of the dataset (and metadata).
Same as Dataset.subset() except that variables and samples can be
specified by their names.
Some examples:
- d.subset(variables=['shh', 'genex'])
- s.subset(samples=["control%d" % i for i in xrange(10)])
"""
vardict = dict((v.name, i) for i,v in enumerate(self.variables))
sampledict = dict((s.name, i) for i,s in enumerate(self.samples))
# if name not found, we let the KeyError be raised
variables = [vardict[v] for v in variables] if variables else variables
samples = [sampledict[s] for s in samples] if samples else samples
return self.subset(variables, samples)
def discretize(self, includevars=None, excludevars=[], numbins=3):
"""Discretize (or bin) the data in-place.
This method is just an alias for pebl.discretizer.maximum_entropy_discretizer()
See the module documentation for pebl.discretizer for more information.
"""
self.original_observations = self.observations.copy()
self = discretizer.maximum_entropy_discretize(
self,
includevars, excludevars,
numbins
)
def tofile(self, filename, *args, **kwargs):
"""Write the data and metadata to file in a tab-delimited format."""
with file(filename, 'w') as f:
f.write(self.tostring(*args, **kwargs))
def tostring(self, linesep='\n', variable_header=True, sample_header=True):
"""Return the data and metadata as a string in a tab-delimited format.
If variable_header is True, include variable names and type.
If sample_header is True, include sample names.
Both are True by default.
"""
def dataitem(row, col):
val = "X" if self.missing[row,col] else str(self.observations[row,col])
val += "!" if self.interventions[row,col] else ''
return val
def variable(v):
name = v.name
if isinstance(v, ClassVariable):
return "%s,class(%s)" % (name, ','.join(v.labels))
elif isinstance(v, DiscreteVariable):
return "%s,discrete(%d)" % (name, v.arity)
elif isinstance(v, ContinuousVariable):
return "%s,continuous" % name
else:
return v.name
# ---------------------------------------------------------------------
# python strings are immutable, so string concatenation is expensive!
# preferred way is to make list of lines, then use one join.
lines = []
# add variable annotations
if sample_header:
lines.append("\t".join([variable(v) for v in self.variables]))
# format data
nrows,ncols = self.shape
d = [[dataitem(r,c) for c in xrange(ncols)] for r in xrange(nrows)]
# add sample names if we have them
if sample_header and hasattr(self.samples[0], 'name'):
d = [[s.name] + row for row,s in zip(d,self.samples)]
# add data to lines
lines.extend(["\t".join(row) for row in d])
return linesep.join(lines)
#
# public propoerties
#
@property
def shape(self):
"""The shape of the dataset as (number of samples, number of variables)."""
return self.observations.shape
@property
def has_interventions(self):
"""Whether the dataset has any interventions."""
if hasattr(self, '_has_interventions'):
return self._has_interventions
else:
self._has_interventions = self.interventions.any()
return self._has_interventions
@property
def has_missing(self):
"""Whether the dataset has any missing values."""
if hasattr(self, '_has_missing'):
return self._has_missing
else:
self._has_missing = self.missing.any()
return self._has_missing
#
# private methods/properties
#
def _calc_stats(self):
self._has_interventions = self.interventions.any()
self._has_missing = self.missing.any()
def _guess_arities(self):
"""Guesses variable arity by counting the number of unique observations."""
for col,var in enumerate(self.variables):
var.arity = N.unique(self.observations[:,col]).size
var.__class__ = DiscreteVariable
def check_arities(self):
"""Checks whether the specified airty >= number of unique observations.
The check is only performed for discrete variables.
If this check fails, the CPT and other data structures would fail.
So, we should raise error while loading the data. Fail Early and Explicitly!
"""
errors = []
for col,v in enumerate(self.variables):
if isinstance(v, DiscreteVariable):
uniquevals = N.unique(self.observations[:,col]).size
if v.arity < uniquevals:
errors.append((v, uniquevals))
if errors:
raise IncorrectArityError(errors)
class _FastDataset(Dataset):
"""A version of the Dataset class created by the _subset_ni_fast method.
The Dataset._subset_ni_fast method creates a quick and dirty subset that
skips many steps. It's a private method used by the evaluator module. Do
not use this unless you know what you're doing.
"""
pass
#
# Factory Functions
#
def fromfile(filename):
"""Parse file and return a Dataset instance.
The data file is expected to conform to the following format
- comment lines begin with '#' and are ignored.
- The first non-comment line *must* specify variable annotations
separated by tab characters.
- data lines specify the data values separated by tab characters.
- data lines *can* include sample names
A data value specifies the observed numeric value, whether it's missing and
whether it represents an intervention:
- An 'x' or 'X' indicate that the value is missing
- A '!' before or after the numeric value indicates an intervention
Variable annotations specify the name of the variable and, *optionally*,
the data type.
Examples include:
- Foo : just variable name
- Foo,continuous : Foo is a continuous variable
- Foo,discrete(3) : Foo is a discrete variable with arity of 3
- Foo,class(normal,cancer): Foo is a class variable with arity of 2 and
values of either normal or cancer.
"""
with file(filename) as f:
return fromstring(f.read())
def fromstring(stringrep, fieldsep='\t'):
"""Parse the string representation of a dataset and return a Dataset instance.
See the documentation for fromfile() for information about file format.
"""
# parse a data item (examples: '5' '2.5', 'X', 'X!', '5!')
def dataitem(item, v):
item = item.strip()
intervention = False
missing = False
# intervention?
if item[0] == "!":
intervention = True
item = item[1:]
elif item[-1] == "!":
intervention = True
item = item[:-1]
# missing value?
if item[0] in ('x', 'X') or item[-1] in ('x', 'X'):
missing = True
item = "0" if not isinstance(v, ClassVariable) else v.labels[0]
# convert to expected data type
val = item
if isinstance(v, ClassVariable):
try:
val = v.label2int[val]
except KeyError:
raise ClassVariableError()
elif isinstance(v, DiscreteVariable):
try:
val = int(val)
except ValueError:
msg = "Invalid value for discrete variable %s: %s" % (v.name, val)
raise ParsingError(msg)
elif isinstance(v, ContinuousVariable):
try:
val = float(val)
except ValueError:
msg = "Invalid value for continuous variable %s: %s" % (v.name, val)
raise ParsingError(msg)
else:
# if not specified, try parsing as float or int
if '.' in val:
try:
val = float(val)
except:
msg = "Cannot convert value %s to a float." % val
raise ParsingError(msg)
else:
try:
val = int(val)
except:
msg = "Cannot convert value %s to an int." % val
raise ParsingError(msg)
return (val, missing, intervention)
dtype_re = re.compile("([\w\d_-]+)[\(]*([\w\d\s,]*)[\)]*")
def variable(v):
# MS Excel encloses cells with punctuations in double quotes
# and many people use Excel to prepare data
v = v.strip("\"")
parts = v.split(",", 1)
if len(parts) is 2: # datatype specified?
name,dtype = parts
match = dtype_re.match(dtype)
if not match:
raise ParsingError("Error parsing variable header: %s" % v)
dtype_name,dtype_param = match.groups()
dtype_name = dtype_name.lower()
else:
name = parts[0]
dtype_name, dtype_param = None,None
vartypes = {
None: Variable,
'continuous': ContinuousVariable,
'discrete': DiscreteVariable,
'class': ClassVariable
}
return vartypes[dtype_name](name, dtype_param)
# -------------------------------------------------------------------------
# split on all known line seperators, ignoring blank and comment lines
lines = (l.strip() for l in stringrep.splitlines() if l)
lines = (l for l in lines if not l.startswith('#'))
# parse variable annotations (first non-comment line)
variables = lines.next().split(fieldsep)
variables = N.array([variable(v) for v in variables])
# split data into cells
d = [[c for c in row.split(fieldsep)] for row in lines]
# does file contain sample names?
samplenames = True if len(d[0]) == len(variables) + 1 else False
samples = None
if samplenames:
samples = N.array([Sample(row[0]) for row in d])
d = [row[1:] for row in d]
# parse data lines and separate into 3 numpy arrays
# d is a 3D array where the inner dimension is over
# (values, missing, interventions) transpose(2,0,1) makes the inner
# dimension the outer one
d = N.array([[dataitem(c,v) for c,v in zip(row,variables)] for row in d])
obs, missing, interventions = d.transpose(2,0,1)
# pack observations into bytes if possible (they're integers and < 255)
dtype = 'int' if obs.dtype.kind is 'i' else obs.dtype
# x.astype() returns a casted *copy* of x
# returning copies of observations, missing and interventions ensures that
# they're contiguous in memory (should speedup future calculations)
d = Dataset(
obs.astype(dtype),
missing.astype(bool),
interventions.astype(bool),
variables,
samples,
)
d.check_arities()
return d
def fromconfig():
"""Create a Dataset from the configuration information.
Loads data and discretizes (if requested) based on configuration
parameters.
"""
fname = config.get('data.filename')
text = config.get('data.text')
if text:
data_ = fromstring(text)
else:
if not fname:
raise Exception("Filename (nor text) for dataset not specified.")
data_ = fromfile(fname)
numbins = config.get('data.discretize')
if numbins > 0:
data_.discretize(numbins=numbins)
return data_
def merge(datasets, axis=None):
"""Merges multiple datasets.
datasets should be a list of Dataset objects.
axis should be either 'variables' or 'samples' and determines how the
datasets are merged.
"""
if axis == 'variables':
variables = N.hstack(tuple(d.variables for d in datasets))
samples = datasets[0].samples
stacker = N.hstack
else:
samples = N.hstack(tuple(d.samples for d in datasets))
variables = datasets[0].variables
stacker = N.vstack
missing = stacker(tuple(d.missing for d in datasets))
interventions = stacker(tuple(d.interventions for d in datasets))
observations = stacker(tuple(d.observations for d in datasets))
return Dataset(observations, missing, interventions, variables, samples)
|