/usr/lib/python2.7/dist-packages/pebl/result.py is in python-pebl 1.0.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 | """Classes for learner results and statistics."""
from __future__ import with_statement
import time
import socket
from bisect import insort, bisect
from copy import deepcopy, copy
import cPickle
import os.path
import shutil
import tempfile
from numpy import exp
try:
from matplotlib.backends.backend_agg import FigureCanvasAgg
from matplotlib.figure import Figure
import simplejson
from pkg_resources import resource_filename
_can_create_html = True
except:
_can_create_html = False
from pebl import posterior, config
from pebl.util import flatten, rescale_logvalues
from pebl.network import Network
class _ScoredNetwork(Network):
"""A class for representing scored networks.
Supports comparision of networks based on score and equality based on first
checking score equality (MUCH faster than checking network edges), then edges.
Note: This is a private class used by LearnerResult. It's interface is
not guaranteed to ramain stable.
"""
def __init__(self, edgelist, score):
self.edges = edgelist
self.score = score
def __cmp__(self, other):
return cmp(self.score, other.score)
def __eq__(self, other):
return self.score == other.score and self.edges == other.edges
def __hash__(self):
return hash(self.edges)
class LearnerRunStats:
def __init__(self, start):
self.start = start
self.end = None
self.host = socket.gethostname()
class LearnerResult:
"""Class for storing any and all output of a learner.
This is a mutable container for networks and scores. In the future, it will
also be the place to collect statistics related to the learning task.
"""
#
# Parameters
#
_params = (
config.StringParameter(
'result.filename',
'The name of the result output file',
default='result.pebl'
),
config.StringParameter(
'result.format',
'The format for the pebl result file (pickle or html)',
config.oneof('pickle', 'html'),
default='pickle'
),
config.StringParameter(
'result.outdir',
'Directory for html report.',
default='result'
),
config.IntParameter(
'result.size',
"""Number of top-scoring networks to save. Specify 0 to indicate that
all scored networks should be saved.""",
default=1000
)
)
def __init__(self, learner_=None, size=None):
self.data = learner_.data if learner_ else None
self.nodes = self.data.variables if self.data else None
self.size = size or config.get('result.size')
self.networks = []
self.nethashes = {}
self.runs = []
def start_run(self):
"""Indicates that the learner is starting a new run."""
self.runs.append(LearnerRunStats(time.time()))
def stop_run(self):
"""Indicates that the learner is stopping a run."""
self.runs[-1].end = time.time()
def add_network(self, net, score):
"""Add a network and score to the results."""
nets = self.networks
nethashes = self.nethashes
nethash = hash(net.edges)
if self.size == 0 or len(nets) < self.size:
if nethash not in nethashes:
snet = _ScoredNetwork(copy(net.edges), score)
insort(nets, snet)
nethashes[nethash] = 1
elif score > nets[0].score and nethash not in nethashes:
nethashes.pop(hash(nets[0].edges))
nets.remove(nets[0])
snet = _ScoredNetwork(copy(net.edges), score)
insort(nets, snet)
nethashes[nethash] = 1
def tofile(self, filename=None):
"""Save the result to a python pickle file.
The result can be later read using the result.fromfile function.
"""
filename = filename or config.get('result.filename')
with open(filename, 'w') as fp:
cPickle.dump(self, fp)
def tohtml(self, outdir=None):
"""Create a html report of the result.
outdir is a directory to create html files inside.
"""
if _can_create_html:
HtmlFormatter().htmlreport(
self,
outdir or config.get('result.outdir')
)
else:
print "Cannot create html reports because some dependencies are missing."
@property
def posterior(self):
"""Returns a posterior object for this result."""
return posterior.from_sorted_scored_networks(
self.nodes,
list(reversed(self.networks))
)
class HtmlFormatter:
def htmlreport(self, result_, outdir, numnetworks=10):
"""Create a html report for the given result."""
def jsonize_run(r):
return {
'start': time.asctime(time.localtime(r.start)),
'end': time.asctime(time.localtime(r.end)),
'runtime': round((r.end - r.start)/60, 3),
'host': r.host
}
pjoin = os.path.join
# make outdir if it does not exist
if not os.path.exists(outdir):
os.makedirs(outdir)
# copy static files to outdir
staticdir = resource_filename('pebl', 'resources/htmlresult')
shutil.copy2(pjoin(staticdir, 'index.html'), outdir)
shutil.copytree(pjoin(staticdir, 'lib'), pjoin(outdir, 'lib'))
# change outdir to outdir/data
outdir = pjoin(outdir, 'data')
os.mkdir(outdir)
# get networks and scores
post = result_.posterior
numnetworks = numnetworks if len(post) >= numnetworks else len(post)
topscores = post.scores[:numnetworks]
norm_topscores = exp(rescale_logvalues(topscores))
# create json-able datastructure
resultsdata = {
'topnets_normscores': [round(s,3) for s in norm_topscores],
'topnets_scores': [round(s,3) for s in topscores],
'runs': [jsonize_run(r) for r in result_.runs],
}
# write out results related data (in json format)
open(pjoin(outdir, 'result.data.js'), 'w').write(
"resultdata=" + simplejson.dumps(resultsdata)
)
# create network images
top = post[0]
top.layout()
for i,net in enumerate(post[:numnetworks]):
self.network_image(
net,
pjoin(outdir, "%s.png" % i),
pjoin(outdir, "%s-common.png" % i),
top.node_positions
)
# create consensus network images
cm = post.consensus_matrix
for threshold in xrange(10):
self.consensus_network_image(
post.consensus_network(threshold/10.0),
pjoin(outdir, "consensus.%s.png" % threshold),
cm, top.node_positions
)
# create score plot
self.plot(post.scores, pjoin(outdir, "scores.png"))
def plot(self, values, outfile):
fig = Figure(figsize=(5,5))
ax = fig.add_axes([0.18, 0.15, 0.75, 0.75])
ax.scatter(range(len(values)), values, edgecolors='None',s=10)
ax.set_title("Scores (in sorted order)")
ax.set_xlabel("Networks")
ax.set_ylabel("Log score")
ax.set_xbound(-20, len(values)+20)
canvas = FigureCanvasAgg(fig)
canvas.print_figure(outfile, dpi=80)
def network_image(self, net, outfile1, outfile2, node_positions,
dot="dot", neato="neato"):
# with network's optimal layout
fd,fname = tempfile.mkstemp()
net.as_dotfile(fname)
os.system("%s -Tpng -o%s %s" % (dot, outfile1, fname))
os.remove(fname)
# with given layout
net.node_positions = node_positions
fd,fname = tempfile.mkstemp()
net.as_dotfile(fname)
os.system("%s -n1 -Tpng -o%s %s" % (neato, outfile2, fname))
os.remove(fname)
def consensus_network_image(self, net, outfile, cm, node_positions):
def colorize_edge(weight):
colors = "9876543210"
breakpoints = [.1, .2, .3, .4, .5, .6, .7, .8, .9]
return "#" + str(colors[bisect(breakpoints, weight)])*6
def node(n, position):
s = "\t\"%s\"" % n.name
if position:
x,y = position
s += " [pos=\"%d,%d\"]" % (x,y)
return s + ";"
nodes = net.nodes
positions = node_positions
dotstr = "\n".join(
["digraph G {"] +
[node(n, pos) for n,pos in zip(nodes, positions)] +
["\t\"%s\" -> \"%s\" [color=\"%s\"];" % \
(nodes[src].name, nodes[dest].name, colorize_edge(cm[src][dest])) \
for src,dest in net.edges
] +
["}"]
)
fd,fname = tempfile.mkstemp()
open(fname, 'w').write(dotstr)
os.system("neato -n1 -Tpng -o%s %s" % (outfile, fname))
os.remove(fname)
#
# Factory and other functions
#
def merge(*args):
"""Returns a merged result object.
Example::
merge(result1, result2, result3)
results = [result1, result2, result3]
merge(results)
merge(*results)
"""
results = flatten(args)
if len(results) is 1:
return results[0]
# create new result object
newresults = LearnerResult()
newresults.data = results[0].data
newresults.nodes = results[0].nodes
# merge all networks, remove duplicates, then sort
allnets = list(set([net for net in flatten(r.networks for r in results)]))
allnets.sort()
newresults.networks = allnets
newresults.nethashes = dict([(net, 1) for net in allnets])
# merge run statistics
if hasattr(results[0], 'runs'):
newresults.runs = flatten([r.runs for r in results])
else:
newresults.runs = []
return newresults
def fromfile(filename):
"""Loads a learner result from file."""
return cPickle.load(open(filename))
|