/usr/lib/python2.7/dist-packages/pyfits/diff.py is in python-pyfits 1:3.4-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 | """
Facilities for diffing two FITS files. Includes objects for diffing entire
FITS files, individual HDUs, FITS headers, or just FITS data.
Used to implement the fitsdiff program.
"""
import difflib
import fnmatch
import functools
import glob
import textwrap
import os.path
from collections import defaultdict
from itertools import islice
import numpy as np
from .extern import six
from .extern.six import string_types, StringIO
from .extern.six.moves import zip, range, xrange, reduce
import pyfits
from .card import Card, BLANK_CARD
from .header import Header
# HDUList is used in one of the doctests
from .hdu.hdulist import fitsopen # pylint: disable=W0611
from .hdu.table import _TableLikeHDU
from .py3compat import getargspec
from .util import indent
__all__ = ['FITSDiff', 'HDUDiff', 'HeaderDiff', 'ImageDataDiff', 'RawDataDiff',
'TableDataDiff']
# Column attributes of interest for comparison
_COL_ATTRS = [('unit', 'units'), ('null', 'null values'), ('bscale', 'bscales'),
('bzero', 'bzeros'), ('disp', 'display formats'),
('dim', 'dimensions')]
# Smaller default shift-width for indent:
indent = functools.partial(indent, width=2)
class _BaseDiff(object):
"""
Base class for all FITS diff objects.
When instantiating a FITS diff object, the first two arguments are always
the two objects to diff (two FITS files, two FITS headers, etc.).
Instantiating a ``_BaseDiff`` also causes the diff itself to be executed.
The returned ``_BaseDiff`` instance has a number of attribute that describe
the results of the diff operation.
The most basic attribute, present on all ``_BaseDiff`` instances, is
``.identical`` which is `True` if the two objects being compared are
identical according to the diff method for objects of that type.
"""
def __init__(self, a, b):
"""
The ``_BaseDiff`` class does not implement a ``_diff`` method and
should not be instantiated directly. Instead instantiate the
appropriate subclass of ``_BaseDiff`` for the objects being compared
(for example, use `HeaderDiff` to compare two `Header` objects.
"""
self.a = a
self.b = b
# For internal use in report output
self._fileobj = None
self._indent = 0
self._diff()
def __nonzero__(self):
"""
A ``_BaseDiff`` object acts as `True` in a boolean context if the two
objects compared are identical. Otherwise it acts as `False`.
"""
return not self.identical
if six.PY3:
__bool__ = __nonzero__
del __nonzero__
@classmethod
def fromdiff(cls, other, a, b):
"""
Returns a new Diff object of a specific subclass from an existing diff
object, passing on the values for any arguments they share in common
(such as ignore_keywords).
For example::
>>> from pyfits import HDUList, Header, FITSDiff
>>> hdul1, hdul2 = HDUList(), HDUList()
>>> headera, headerb = Header(), Header()
>>> fd = FITSDiff(hdul1, hdul2, ignore_keywords=['*'])
>>> hd = HeaderDiff.fromdiff(fd, headera, headerb)
>>> list(hd.ignore_keywords)
['*']
"""
args, _, _, _ = getargspec(cls.__init__)
# The first 3 arguments of any Diff initializer are self, a, and b.
kwargs = {}
for arg in args[3:]:
if hasattr(other, arg):
kwargs[arg] = getattr(other, arg)
return cls(a, b, **kwargs)
@property
def identical(self):
"""
`True` if all the ``.diff_*`` attributes on this diff instance are
empty, implying that no differences were found.
Any subclass of ``_BaseDiff`` must have at least one ``.diff_*``
attribute, which contains a non-empty value if and only if some
difference was found between the two objects being compared.
"""
return not any(getattr(self, attr) for attr in self.__dict__
if attr.startswith('diff_'))
def report(self, fileobj=None, indent=0, clobber=False):
"""
Generates a text report on the differences (if any) between two
objects, and either returns it as a string or writes it to a file-like
object.
Parameters
----------
fileobj : file-like object, string, or None (optional)
If `None`, this method returns the report as a string. Otherwise it
returns `None` and writes the report to the given file-like object
(which must have a ``.write()`` method at a minimum), or to a new
file at the path specified.
indent : int
The number of 4 space tabs to indent the report.
clobber : bool
Whether the report output should overwrite an existing file, when
fileobj is specified as a path.
Returns
-------
report : str or None
"""
return_string = False
filepath = None
if isinstance(fileobj, string_types):
if os.path.exists(fileobj) and not clobber:
raise IOError("File {0} exists, aborting (pass in "
"clobber=True to overwrite)".format(fileobj))
else:
filepath = fileobj
fileobj = open(filepath, 'w')
elif fileobj is None:
fileobj = StringIO()
return_string = True
self._fileobj = fileobj
self._indent = indent # This is used internally by _writeln
try:
self._report()
finally:
if filepath:
fileobj.close()
if return_string:
return fileobj.getvalue()
def _writeln(self, text):
self._fileobj.write(indent(text, self._indent) + '\n')
def _diff(self):
raise NotImplementedError
def _report(self):
raise NotImplementedError
class FITSDiff(_BaseDiff):
"""Diff two FITS files by filename, or two `HDUList` objects.
`FITSDiff` objects have the following diff attributes:
- ``diff_hdu_count``: If the FITS files being compared have different
numbers of HDUs, this contains a 2-tuple of the number of HDUs in each
file.
- ``diff_hdus``: If any HDUs with the same index are different, this
contains a list of 2-tuples of the HDU index and the `HDUDiff` object
representing the differences between the two HDUs.
"""
def __init__(self, a, b, ignore_keywords=[], ignore_comments=[],
ignore_fields=[], numdiffs=10, tolerance=0.0,
ignore_blanks=True, ignore_blank_cards=True):
"""
Parameters
----------
a : str or `HDUList`
The filename of a FITS file on disk, or an `HDUList` object.
b : str or `HDUList`
The filename of a FITS file on disk, or an `HDUList` object to
compare to the first file.
ignore_keywords : sequence, optional
Header keywords to ignore when comparing two headers; the presence
of these keywords and their values are ignored. Wildcard strings
may also be included in the list.
ignore_comments : sequence, optional
A list of header keywords whose comments should be ignored in the
comparison. May contain wildcard strings as with ignore_keywords.
ignore_fields : sequence, optional
The (case-insensitive) names of any table columns to ignore if any
table data is to be compared.
numdiffs : int, optional
The number of pixel/table values to output when reporting HDU data
differences. Though the count of differences is the same either
way, this allows controlling the number of different values that
are kept in memory or output. If a negative value is given, then
numdiffs is treated as unlimited (default: 10).
tolerance : float, optional
The relative difference to allow when comparing two float values
either in header values, image arrays, or table columns
(default: 0.0).
ignore_blanks : bool, optional
Ignore extra whitespace at the end of string values either in
headers or data. Extra leading whitespace is not ignored
(default: True).
ignore_blank_cards : bool, optional
Ignore all cards that are blank, i.e. they only contain
whitespace (default: True).
"""
if isinstance(a, string_types):
try:
a = fitsopen(a)
except Exception:
excls, exc = sys.exc_info()[:2]
raise IOError("error opening file a (%s): %s: %s" %
(a, exc.__class__.__name__, exc.args[0]))
close_a = True
else:
close_a = False
if isinstance(b, string_types):
try:
b = fitsopen(b)
except Exception:
excls, exc = sys.exc_info()[:2]
raise IOError("error opening file b (%s): %s: %s" %
(b, exc.__class__.__name__, exc.args[0]))
close_b = True
else:
close_b = False
# Normalize keywords/fields to ignore to upper case
self.ignore_keywords = set(k.upper() for k in ignore_keywords)
self.ignore_comments = set(k.upper() for k in ignore_comments)
self.ignore_fields = set(k.upper() for k in ignore_fields)
self.numdiffs = numdiffs
self.tolerance = tolerance
self.ignore_blanks = ignore_blanks
self.ignore_blank_cards = ignore_blank_cards
self.diff_hdu_count = ()
self.diff_hdus = []
try:
super(FITSDiff, self).__init__(a, b)
finally:
if close_a:
a.close()
if close_b:
b.close()
def _diff(self):
if len(self.a) != len(self.b):
self.diff_hdu_count = (len(self.a), len(self.b))
# For now, just compare the extensions one by one in order...might
# allow some more sophisticated types of diffing later...
# TODO: Somehow or another simplify the passing around of diff
# options--this will become important as the number of options grows
for idx in range(min(len(self.a), len(self.b))):
hdu_diff = HDUDiff.fromdiff(self, self.a[idx], self.b[idx])
if not hdu_diff.identical:
self.diff_hdus.append((idx, hdu_diff))
def _report(self):
wrapper = textwrap.TextWrapper(initial_indent=' ',
subsequent_indent=' ')
# print out heading and parameter values
filenamea = self.a.filename()
if not filenamea:
filenamea = '<%s object at 0x%x>' % (self.a.__class__.__name__,
id(self.a))
filenameb = self.b.filename()
if not filenameb:
filenameb = '<%s object at 0x%x>' % (self.b.__class__.__name__,
id(self.b))
self._fileobj.write('\n')
self._writeln(' fitsdiff: %s' % pyfits.__version__)
self._writeln(' a: %s\n b: %s' % (filenamea, filenameb))
if self.ignore_keywords:
ignore_keywords = ' '.join(sorted(self.ignore_keywords))
self._writeln(' Keyword(s) not to be compared:\n%s' %
wrapper.fill(ignore_keywords))
if self.ignore_comments:
ignore_comments = ' '.join(sorted(self.ignore_comments))
self._writeln(' Keyword(s) whose comments are not to be compared:'
'\n%s' % wrapper.fill(ignore_comments))
if self.ignore_fields:
ignore_fields = ' '.join(sorted(self.ignore_fields))
self._writeln(' Table column(s) not to be compared:\n%s' %
wrapper.fill(ignore_fields))
self._writeln(' Maximum number of different data values to be '
'reported: %s' % self.numdiffs)
self._writeln(' Data comparison level: %s' % self.tolerance)
if self.diff_hdu_count:
self._fileobj.write('\n')
self._writeln('Files contain different numbers of HDUs:')
self._writeln(' a: %d' % self.diff_hdu_count[0])
self._writeln(' b: %d' % self.diff_hdu_count[1])
if not self.diff_hdus:
self._writeln('No differences found between common HDUs.')
return
elif not self.diff_hdus:
self._fileobj.write('\n')
self._writeln('No differences found.')
return
for idx, hdu_diff in self.diff_hdus:
# print out the extension heading
if idx == 0:
self._fileobj.write('\n')
self._writeln('Primary HDU:')
else:
self._fileobj.write('\n')
self._writeln('Extension HDU %d:' % idx)
hdu_diff.report(self._fileobj, indent=self._indent + 1)
class HDUDiff(_BaseDiff):
"""
Diff two HDU objects, including their headers and their data (but only if
both HDUs contain the same type of data (image, table, or unknown).
`HDUDiff` objects have the following diff attributes:
- ``diff_extnames``: If the two HDUs have different EXTNAME values, this
contains a 2-tuple of the different extension names.
- ``diff_extvers``: If the two HDUS have different EXTVER values, this
contains a 2-tuple of the different extension versions.
- ``diff_extlevels``: If the two HDUs have different EXTLEVEL values, this
contains a 2-tuple of the different extension levels.
- ``diff_extension_types``: If the two HDUs have different XTENSION values,
this contains a 2-tuple of the different extension types.
- ``diff_headers``: Contains a `HeaderDiff` object for the headers of the
two HDUs. This will always contain an object--it may be determined
whether the headers are different through ``diff_headers.identical``.
- ``diff_data``: Contains either a `ImageDataDiff`, `TableDataDiff`, or
`RawDataDiff` as appropriate for the data in the HDUs, and only if the
two HDUs have non-empty data of the same type (`RawDataDiff` is used for
HDUs containing non-empty data of an indeterminate type).
"""
def __init__(self, a, b, ignore_keywords=[], ignore_comments=[],
ignore_fields=[], numdiffs=10, tolerance=0.0,
ignore_blanks=True, ignore_blank_cards=True):
"""
See `FITSDiff` for explanations of the initialization parameters.
"""
self.ignore_keywords = set(k.upper() for k in ignore_keywords)
self.ignore_comments = set(k.upper() for k in ignore_comments)
self.ignore_fields = set(k.upper() for k in ignore_fields)
self.tolerance = tolerance
self.numdiffs = numdiffs
self.ignore_blanks = ignore_blanks
self.diff_extnames = ()
self.diff_extvers = ()
self.diff_extlevels = ()
self.diff_extension_types = ()
self.diff_headers = None
self.diff_data = None
super(HDUDiff, self).__init__(a, b)
def _diff(self):
if self.a.name != self.b.name:
self.diff_extnames = (self.a.name, self.b.name)
if self.a.ver != self.b.ver:
self.diff_extvers = (self.a.ver, self.b.ver)
if self.a.level != self.b.level:
self.diff_extlevels = (self.a.level, self.b.level)
if self.a.header.get('XTENSION') != self.b.header.get('XTENSION'):
self.diff_extension_types = (self.a.header.get('XTENSION'),
self.b.header.get('XTENSION'))
self.diff_headers = HeaderDiff.fromdiff(self, self.a.header.copy(),
self.b.header.copy())
if self.a.data is None or self.b.data is None:
# TODO: Perhaps have some means of marking this case
pass
elif self.a.is_image and self.b.is_image:
self.diff_data = ImageDataDiff.fromdiff(self, self.a.data,
self.b.data)
elif (isinstance(self.a, _TableLikeHDU) and
isinstance(self.b, _TableLikeHDU)):
# TODO: Replace this if/when _BaseHDU grows a .is_table property
self.diff_data = TableDataDiff.fromdiff(self, self.a.data,
self.b.data)
elif not self.diff_extension_types:
# Don't diff the data for unequal extension types that are not
# recognized image or table types
self.diff_data = RawDataDiff.fromdiff(self, self.a.data,
self.b.data)
def _report(self):
if self.identical:
self._writeln(" No differences found.")
if self.diff_extension_types:
self._writeln(" Extension types differ:\n a: %s\n b: %s" %
self.diff_extension_types)
if self.diff_extnames:
self._writeln(" Extension names differ:\n a: %s\n b: %s" %
self.diff_extnames)
if self.diff_extvers:
self._writeln(" Extension versions differ:\n a: %s\n b: %s" %
self.diff_extvers)
if self.diff_extlevels:
self._writeln(u(" Extension levels differ:\n a: %s\n b: %s") %
self.diff_extlevels)
if not self.diff_headers.identical:
self._fileobj.write('\n')
self._writeln(" Headers contain differences:")
self.diff_headers.report(self._fileobj, indent=self._indent + 1)
if self.diff_data is not None and not self.diff_data.identical:
self._fileobj.write('\n')
self._writeln(" Data contains differences:")
self.diff_data.report(self._fileobj, indent=self._indent + 1)
class HeaderDiff(_BaseDiff):
"""
Diff two `Header` objects.
`HeaderDiff` objects have the following diff attributes:
- ``diff_keyword_count``: If the two headers contain a different number of
keywords, this contains a 2-tuple of the keyword count for each header.
- ``diff_keywords``: If either header contains one or more keywords that
don't appear at all in the other header, this contains a 2-tuple
consisting of a list of the keywords only appearing in header a, and a
list of the keywords only appearing in header b.
- ``diff_duplicate_keywords``: If a keyword appears in both headers at
least once, but contains a different number of duplicates (for example, a
different number of HISTORY cards in each header), an item is added to
this dict with the keyword as the key, and a 2-tuple of the different
counts of that keyword as the value. For example::
{'HISTORY': (20, 19)}
means that header a contains 20 HISTORY cards, while header b contains
only 19 HISTORY cards.
- ``diff_keyword_values``: If any of the common keyword between the two
headers have different values, they appear in this dict. It has a
structure similar to ``diff_duplicate_keywords``, with the keyword as the
key, and a 2-tuple of the different values as the value. For example::
{'NAXIS': (2, 3)}
means that the NAXIS keyword has a value of 2 in header a, and a value of
3 in header b. This excludes any keywords matched by the
``ignore_keywords`` list.
- ``diff_keyword_comments``: Like ``diff_keyword_values``, but contains
differences between keyword comments.
`HeaderDiff` objects also have a ``common_keywords`` attribute that lists
all keywords that appear in both headers.
"""
def __init__(self, a, b, ignore_keywords=[], ignore_comments=[],
tolerance=0.0, ignore_blanks=True, ignore_blank_cards=True):
"""
See `FITSDiff` for explanations of the initialization parameters.
"""
self.ignore_keywords = set(k.upper() for k in ignore_keywords)
self.ignore_comments = set(k.upper() for k in ignore_comments)
self.tolerance = tolerance
self.ignore_blanks = ignore_blanks
self.ignore_blank_cards = ignore_blank_cards
self.ignore_keyword_patterns = set()
self.ignore_comment_patterns = set()
for keyword in list(self.ignore_keywords):
keyword = keyword.upper()
if keyword != '*' and glob.has_magic(keyword):
self.ignore_keywords.remove(keyword)
self.ignore_keyword_patterns.add(keyword)
for keyword in list(self.ignore_comments):
keyword = keyword.upper()
if keyword != '*' and glob.has_magic(keyword):
self.ignore_comments.remove(keyword)
self.ignore_comment_patterns.add(keyword)
# Keywords appearing in each header
self.common_keywords = []
# Set to the number of keywords in each header if the counts differ
self.diff_keyword_count = ()
# Set if the keywords common to each header (excluding ignore_keywords)
# appear in different positions within the header
# TODO: Implement this
self.diff_keyword_positions = ()
# Keywords unique to each header (excluding keywords in
# ignore_keywords)
self.diff_keywords = ()
# Keywords that have different numbers of duplicates in each header
# (excluding keywords in ignore_keywords)
self.diff_duplicate_keywords = {}
# Keywords common to each header but having different values (excluding
# keywords in ignore_keywords)
self.diff_keyword_values = defaultdict(lambda: [])
# Keywords common to each header but having different comments
# (excluding keywords in ignore_keywords or in ignore_comments)
self.diff_keyword_comments = defaultdict(lambda: [])
if isinstance(a, string_types):
a = Header.fromstring(a)
if isinstance(b, string_types):
b = Header.fromstring(b)
if not (isinstance(a, Header) and isinstance(b, Header)):
raise TypeError('HeaderDiff can only diff pyfits.Header objects '
'or strings containing FITS headers.')
super(HeaderDiff, self).__init__(a, b)
# TODO: This doesn't pay much attention to the *order* of the keywords,
# except in the case of duplicate keywords. The order should be checked
# too, or at least it should be an option.
def _diff(self):
if self.ignore_blank_cards:
cardsa = [c for c in self.a.cards if str(c) != BLANK_CARD]
cardsb = [c for c in self.b.cards if str(c) != BLANK_CARD]
else:
cardsa = list(self.a.cards)
cardsb = list(self.b.cards)
# build dictionaries of keyword values and comments
def get_header_values_comments(cards):
values = {}
comments = {}
for card in cards:
value = card.value
if self.ignore_blanks and isinstance(value, string_types):
value = value.rstrip()
values.setdefault(card.keyword, []).append(value)
comments.setdefault(card.keyword, []).append(card.comment)
return values, comments
valuesa, commentsa = get_header_values_comments(cardsa)
valuesb, commentsb = get_header_values_comments(cardsb)
# Normalize all keyword to upper-case for comparison's sake;
# TODO: HIERARCH keywords should be handled case-sensitively I think
keywordsa = set(k.upper() for k in valuesa)
keywordsb = set(k.upper() for k in valuesb)
self.common_keywords = sorted(keywordsa.intersection(keywordsb))
if len(cardsa) != len(cardsb):
self.diff_keyword_count = (len(cardsa), len(cardsb))
# Any other diff attributes should exclude ignored keywords
keywordsa = keywordsa.difference(self.ignore_keywords)
keywordsb = keywordsb.difference(self.ignore_keywords)
if self.ignore_keyword_patterns:
for pattern in self.ignore_keyword_patterns:
keywordsa = keywordsa.difference(fnmatch.filter(keywordsa,
pattern))
keywordsb = keywordsb.difference(fnmatch.filter(keywordsb,
pattern))
if '*' in self.ignore_keywords:
# Any other differences between keywords are to be ignored
return
left_only_keywords = sorted(keywordsa.difference(keywordsb))
right_only_keywords = sorted(keywordsb.difference(keywordsa))
if left_only_keywords or right_only_keywords:
self.diff_keywords = (left_only_keywords, right_only_keywords)
# Compare count of each common keyword
for keyword in self.common_keywords:
if keyword in self.ignore_keywords:
continue
if self.ignore_keyword_patterns:
skip = False
for pattern in self.ignore_keyword_patterns:
if fnmatch.fnmatch(keyword, pattern):
skip = True
break
if skip:
continue
counta = len(valuesa[keyword])
countb = len(valuesb[keyword])
if counta != countb:
self.diff_duplicate_keywords[keyword] = (counta, countb)
# Compare keywords' values and comments
for a, b in zip(valuesa[keyword], valuesb[keyword]):
if diff_values(a, b, tolerance=self.tolerance):
self.diff_keyword_values[keyword].append((a, b))
else:
# If there are duplicate keywords we need to be able to
# index each duplicate; if the values of a duplicate
# are identical use None here
self.diff_keyword_values[keyword].append(None)
if not any(self.diff_keyword_values[keyword]):
# No differences found; delete the array of Nones
del self.diff_keyword_values[keyword]
if '*' in self.ignore_comments or keyword in self.ignore_comments:
continue
if self.ignore_comment_patterns:
skip = False
for pattern in self.ignore_comment_patterns:
if fnmatch.fnmatch(keyword, pattern):
skip = True
break
if skip:
continue
for a, b in zip(commentsa[keyword], commentsb[keyword]):
if diff_values(a, b):
self.diff_keyword_comments[keyword].append((a, b))
else:
self.diff_keyword_comments[keyword].append(None)
if not any(self.diff_keyword_comments[keyword]):
del self.diff_keyword_comments[keyword]
def _report(self):
if self.diff_keyword_count:
self._writeln(' Headers have different number of cards:')
self._writeln(' a: %d' % self.diff_keyword_count[0])
self._writeln(' b: %d' % self.diff_keyword_count[1])
if self.diff_keywords:
for keyword in self.diff_keywords[0]:
if keyword in Card._commentary_keywords:
val = self.a[keyword][0]
else:
val = self.a[keyword]
self._writeln(' Extra keyword %-8r in a: %r' % (keyword, val))
for keyword in self.diff_keywords[1]:
if keyword in Card._commentary_keywords:
val = self.b[keyword][0]
else:
val = self.b[keyword]
self._writeln(' Extra keyword %-8r in b: %r' % (keyword, val))
if self.diff_duplicate_keywords:
for keyword, count in sorted(self.diff_duplicate_keywords.items()):
self._writeln(' Inconsistent duplicates of keyword %-8r:' %
keyword)
self._writeln(' Occurs %d time(s) in a, %d times in (b)' %
count)
if self.diff_keyword_values or self.diff_keyword_comments:
for keyword in self.common_keywords:
report_diff_keyword_attr(self._fileobj, 'values',
self.diff_keyword_values, keyword,
ind=self._indent)
report_diff_keyword_attr(self._fileobj, 'comments',
self.diff_keyword_comments, keyword,
ind=self._indent)
# TODO: It might be good if there was also a threshold option for percentage of
# different pixels: For example ignore if only 1% of the pixels are different
# within some threshold. There are lots of possibilities here, but hold off
# for now until specific cases come up.
class ImageDataDiff(_BaseDiff):
"""
Diff two image data arrays (really any array from a PRIMARY HDU or an IMAGE
extension HDU, though the data unit is assumed to be "pixels").
`ImageDataDiff` objects have the following diff attributes:
- ``diff_dimensions``: If the two arrays contain either a different number
of dimensions or different sizes in any dimension, this contains a
2-tuple of the shapes of each array. Currently no further comparison is
performed on images that don't have the exact same dimensions.
- ``diff_pixels``: If the two images contain any different pixels, this
contains a list of 2-tuples of the array index where the difference was
found, and another 2-tuple containing the different values. For example,
if the pixel at (0, 0) contains different values this would look like::
[(0, 0), (1.1, 2.2)]
where 1.1 and 2.2 are the values of that pixel in each array. This
array only contains up to ``self.numdiffs`` differences, for storage
efficiency.
- ``diff_total``: The total number of different pixels found between the
arrays. Although ``diff_pixels`` does not necessarily contain all the
different pixel values, this can be used to get a count of the total
number of differences found.
- ``diff_ratio``: Contains the ratio of ``diff_total`` to the total number
of pixels in the arrays.
"""
def __init__(self, a, b, numdiffs=10, tolerance=0.0):
"""
See `FITSDiff` for explanations of the initialization parameters.
"""
self.numdiffs = numdiffs
self.tolerance = tolerance
self.diff_dimensions = ()
self.diff_pixels = []
self.diff_ratio = 0
# self.diff_pixels only holds up to numdiffs differing pixels, but this
# self.diff_total stores the total count of differences between
# the images, but not the different values
self.diff_total = 0
super(ImageDataDiff, self).__init__(a, b)
def _diff(self):
if self.a.shape != self.b.shape:
self.diff_dimensions = (self.a.shape, self.b.shape)
# Don't do any further comparison if the dimensions differ
# TODO: Perhaps we could, however, diff just the intersection
# between the two images
return
# Find the indices where the values are not equal
# If neither a nor b are floating point, ignore self.tolerance
if not ((np.issubdtype(self.a.dtype, float) or
np.issubdtype(self.a.dtype, complex)) or
(np.issubdtype(self.b.dtype, float) or
np.issubdtype(self.b.dtype, complex))):
tolerance = 0
else:
tolerance = self.tolerance
diffs = where_not_allclose(self.a, self.b, atol=0.0, rtol=tolerance)
self.diff_total = len(diffs[0])
if self.diff_total == 0:
# Then we're done
return
if self.numdiffs < 0:
numdiffs = self.diff_total
else:
numdiffs = self.numdiffs
self.diff_pixels = [(idx, (self.a[idx], self.b[idx]))
for idx in islice(zip(*diffs), 0, numdiffs)]
self.diff_ratio = float(self.diff_total) / float(len(self.a.flat))
def _report(self):
if self.diff_dimensions:
dimsa = ' x '.join(str(d) for d in
reversed(self.diff_dimensions[0]))
dimsb = ' x '.join(str(d) for d in
reversed(self.diff_dimensions[1]))
self._writeln(' Data dimensions differ:')
self._writeln(' a: %s' % dimsa)
self._writeln(' b: %s' % dimsb)
# For now we don't do any further comparison if the dimensions
# differ; though in the future it might be nice to be able to
# compare at least where the images intersect
self._writeln(' No further data comparison performed.')
return
if not self.diff_pixels:
return
for index, values in self.diff_pixels:
index = [x + 1 for x in reversed(index)]
self._writeln(' Data differs at %s:' % index)
report_diff_values(self._fileobj, values[0], values[1],
ind=self._indent + 1)
if self.diff_total > self.numdiffs:
self._writeln(' ...')
self._writeln(' %d different pixels found (%.2f%% different).' %
(self.diff_total, self.diff_ratio * 100))
class RawDataDiff(ImageDataDiff):
"""
`RawDataDiff` is just a special case of `ImageDataDiff` where the images
are one-dimensional, and the data is treated as a 1-dimensional array of
bytes instead of pixel values. This is used to compare the data of two
non-standard extension HDUs that were not recognized as containing image or
table data.
`ImageDataDiff` objects have the following diff attributes:
- ``diff_dimensions``: Same as the ``diff_dimensions`` attribute of
`ImageDataDiff` objects. Though the "dimension" of each array is just an
integer representing the number of bytes in the data.
- ``diff_bytes``: Like the ``diff_pixels`` attribute of `ImageDataDiff`
objects, but renamed to reflect the minor semantic difference that these
are raw bytes and not pixel values. Also the indices are integers
instead of tuples.
- ``diff_total`` and ``diff_ratio``: Same as `ImageDataDiff`.
"""
def __init__(self, a, b, numdiffs=10):
"""
See `FITSDiff` for explanations of the initialization parameters.
"""
self.diff_dimensions = ()
self.diff_bytes = []
super(RawDataDiff, self).__init__(a, b, numdiffs=numdiffs)
def _diff(self):
super(RawDataDiff, self)._diff()
if self.diff_dimensions:
self.diff_dimensions = (self.diff_dimensions[0][0],
self.diff_dimensions[1][0])
self.diff_bytes = [(x[0], y) for x, y in self.diff_pixels]
del self.diff_pixels
def _report(self):
if self.diff_dimensions:
self._writeln(' Data sizes differ:')
self._writeln(' a: %d bytes' % self.diff_dimensions[0])
self._writeln(' b: %d bytes' % self.diff_dimensions[1])
# For now we don't do any further comparison if the dimensions
# differ; though in the future it might be nice to be able to
# compare at least where the images intersect
self._writeln(' No further data comparison performed.')
return
if not self.diff_bytes:
return
for index, values in self.diff_bytes:
self._writeln(' Data differs at byte %d:' % index)
report_diff_values(self._fileobj, values[0], values[1],
ind=self._indent + 1)
self._writeln(' ...')
self._writeln(' %d different bytes found (%.2f%% different).' %
(self.diff_total, self.diff_ratio * 100))
class TableDataDiff(_BaseDiff):
"""
Diff two table data arrays. It doesn't matter whether the data originally
came from a binary or ASCII table--the data should be passed in as a
recarray.
`TableDataDiff` objects have the following diff attributes:
- ``diff_column_count``: If the tables being compared have different
numbers of columns, this contains a 2-tuple of the column count in each
table. Even if the tables have different column counts, an attempt is
still made to compare any columns they have in common.
- ``diff_columns``: If either table contains columns unique to that table,
either in name or format, this contains a 2-tuple of lists. The first
element is a list of columns (these are full `Column` objects) that
appear only in table a. The second element is a list of tables that
appear only in table b. This only lists columns with different column
definitions, and has nothing to do with the data in those columns.
- ``diff_column_names``: This is like ``diff_columns``, but lists only the
names of columns unique to either table, rather than the full `Column`
objects.
- ``diff_column_attributes``: Lists columns that are in both tables but
have different secondary attributes, such as TUNIT or TDISP. The format
is a list of 2-tuples: The first a tuple of the column name and the
attribute, the second a tuple of the different values.
- ``diff_values``: `TableDataDiff` compares the data in each table on a
column-by-column basis. If any different data is found, it is added to
this list. The format of this list is similar to the ``diff_pixels``
attribute on `ImageDataDiff` objects, though the "index" consists of a
(column_name, row) tuple. For example::
[('TARGET', 0), ('NGC1001', 'NGC1002')]
shows that the tables contain different values in the 0-th row of the
'TARGET' column.
- ``diff_total`` and ``diff_ratio``: Same as `ImageDataDiff`.
`TableDataDiff` objects also have a ``common_columns`` attribute that lists
the `Column` objects for columns that are identical in both tables, and a
``common_column_names`` attribute which contains a set of the names of
those columns.
"""
def __init__(self, a, b, ignore_fields=[], numdiffs=10, tolerance=0.0):
"""
See `FITSDiff` for explanations of the initialization parameters.
"""
self.ignore_fields = set(ignore_fields)
self.numdiffs = numdiffs
self.tolerance = tolerance
self.common_columns = []
self.common_column_names = set()
# self.diff_columns contains columns with different column definitions,
# but not different column data. Column data is only compared in
# columns that have the same definitions
self.diff_rows = ()
self.diff_column_count = ()
self.diff_columns = ()
# If two columns have the same name+format, but other attributes are
# different (such as TUNIT or such) they are listed here
self.diff_column_attributes = []
# Like self.diff_columns, but just contains a list of the column names
# unique to each table, and in the order they appear in the tables
self.diff_column_names = ()
self.diff_values = []
self.diff_ratio = 0
self.diff_total = 0
super(TableDataDiff, self).__init__(a, b)
def _diff(self):
# Much of the code for comparing columns is similar to the code for
# comparing headers--consider refactoring
colsa = self.a.columns
colsb = self.b.columns
if len(colsa) != len(colsb):
self.diff_column_count = (len(colsa), len(colsb))
# Even if the number of columns are unequal, we still do comparison of
# any common columns
colsa = dict((c.name.lower(), c) for c in colsa)
colsb = dict((c.name.lower(), c) for c in colsb)
if '*' in self.ignore_fields:
# If all columns are to be ignored, ignore any further differences
# between the columns
return
# Keep the user's original ignore_fields list for reporting purposes,
# but internally use a case-insensitive version
ignore_fields = set([f.lower() for f in self.ignore_fields])
# It might be nice if there were a cleaner way to do this, but for now
# it'll do
for fieldname in ignore_fields:
fieldname = fieldname.lower()
if fieldname in colsa:
del colsa[fieldname]
if fieldname in colsb:
del colsb[fieldname]
colsa_set = set(colsa.values())
colsb_set = set(colsb.values())
self.common_columns = sorted(colsa_set.intersection(colsb_set),
key=lambda c: c.name)
self.common_column_names = set([col.name.lower()
for col in self.common_columns])
left_only_columns = dict((col.name.lower(), col)
for col in colsa_set.difference(colsb_set))
right_only_columns = dict((col.name.lower(), col)
for col in colsb_set.difference(colsa_set))
if left_only_columns or right_only_columns:
self.diff_columns = (left_only_columns, right_only_columns)
self.diff_column_names = ([], [])
if left_only_columns:
for col in self.a.columns:
if col.name.lower() in left_only_columns:
self.diff_column_names[0].append(col.name)
if right_only_columns:
for col in self.b.columns:
if col.name.lower() in right_only_columns:
self.diff_column_names[1].append(col.name)
# If the tables have a different number of rows, we don't compare the
# columns right now.
# TODO: It might be nice to optionally compare the first n rows where n
# is the minimum of the row counts between the two tables.
if len(self.a) != len(self.b):
self.diff_rows = (len(self.a), len(self.b))
return
# If the tables contain no rows there's no data to compare, so we're
# done at this point. (See ticket #178)
if len(self.a) == len(self.b) == 0:
return
# Like in the old fitsdiff, compare tables on a column by column basis
# The difficulty here is that, while FITS column names are meant to be
# case-insensitive, PyFITS still allows, for the sake of flexibility,
# two columns with the same name but different case. When columns are
# accessed in FITS tables, a case-sensitive is tried first, and failing
# that a case-insensitive match is made.
# It's conceivable that the same column could appear in both tables
# being compared, but with different case.
# Though it *may* lead to inconsistencies in these rare cases, this
# just assumes that there are no duplicated column names in either
# table, and that the column names can be treated case-insensitively.
for col in self.common_columns:
name_lower = col.name.lower()
if name_lower in ignore_fields:
continue
cola = colsa[name_lower]
colb = colsb[name_lower]
for attr, _ in _COL_ATTRS:
vala = getattr(cola, attr, None)
valb = getattr(colb, attr, None)
if diff_values(vala, valb):
self.diff_column_attributes.append(
((col.name.upper(), attr), (vala, valb)))
arra = self.a[col.name]
arrb = self.b[col.name]
if (np.issubdtype(arra.dtype, float) and
np.issubdtype(arrb.dtype, float)):
diffs = where_not_allclose(arra, arrb, atol=0.0,
rtol=self.tolerance)
elif 'P' in col.format:
diffs = ([idx for idx in xrange(len(arra))
if not np.allclose(arra[idx], arrb[idx], atol=0.0,
rtol=self.tolerance)],)
else:
diffs = np.where(arra != arrb)
self.diff_total += len(set(diffs[0]))
if self.numdiffs >= 0:
if len(self.diff_values) >= self.numdiffs:
# Don't save any more diff values
continue
# Add no more diff'd values than this
max_diffs = self.numdiffs - len(self.diff_values)
else:
max_diffs = len(diffs[0])
last_seen_idx = None
for idx in islice(diffs[0], 0, max_diffs):
if idx == last_seen_idx:
# Skip duplicate indices, which my occur when the column
# data contains multi-dimensional values; we're only
# interested in storing row-by-row differences
continue
last_seen_idx = idx
self.diff_values.append(((col.name, idx),
(arra[idx], arrb[idx])))
total_values = len(self.a) * len(self.a.dtype.fields)
self.diff_ratio = float(self.diff_total) / float(total_values)
def _report(self):
if self.diff_column_count:
self._writeln(' Tables have different number of columns:')
self._writeln(' a: %d' % self.diff_column_count[0])
self._writeln(' b: %d' % self.diff_column_count[1])
if self.diff_column_names:
# Show columns with names unique to either table
for name in self.diff_column_names[0]:
format = self.diff_columns[0][name.lower()].format
self._writeln(' Extra column %s of format %s in a' %
(name, format))
for name in self.diff_column_names[1]:
format = self.diff_columns[1][name.lower()].format
self._writeln(' Extra column %s of format %s in b' %
(name, format))
col_attrs = dict(_COL_ATTRS)
# Now go through each table again and show columns with common
# names but other property differences...
for col_attr, vals in self.diff_column_attributes:
name, attr = col_attr
self._writeln(' Column %s has different %s:' %
(name, col_attrs[attr]))
report_diff_values(self._fileobj, vals[0], vals[1],
ind=self._indent + 1)
if self.diff_rows:
self._writeln(' Table rows differ:')
self._writeln(' a: %s' % self.diff_rows[0])
self._writeln(' b: %s' % self.diff_rows[1])
self._writeln(' No further data comparison performed.')
return
if not self.diff_values:
return
# Finally, let's go through and report column data differences:
for indx, values in self.diff_values:
self._writeln(' Column %s data differs in row %d:' % indx)
report_diff_values(self._fileobj, values[0], values[1],
ind=self._indent + 1)
if self.diff_values and self.numdiffs < self.diff_total:
self._writeln(' ...%d additional difference(s) found.' %
(self.diff_total - self.numdiffs))
if self.diff_total > self.numdiffs:
self._writeln(' ...')
self._writeln(' %d different table data element(s) found '
'(%.2f%% different).' %
(self.diff_total, self.diff_ratio * 100))
def diff_values(a, b, tolerance=0.0):
"""
Diff two scalar values. If both values are floats they are compared to
within the given relative tolerance.
"""
if isinstance(a, float) and isinstance(b, float):
if np.isnan(a) and np.isnan(b):
return False
return not np.allclose(a, b, tolerance, 0.0)
else:
return a != b
def report_diff_values(fileobj, a, b, ind=0):
"""Write a diff between two values to the specified file-like object."""
typea = type(a)
typeb = type(b)
if (isinstance(a, string_types) and not isinstance(b, string_types)):
a = repr(a).lstrip('u')
elif (isinstance(b, string_types) and not isinstance(a, string_types)):
b = repr(b).lstrip('u')
if isinstance(a, (int, float, complex, np.number)):
a = repr(a)
if isinstance(b, (int, float, complex, np.number)):
b = repr(b)
if isinstance(a, np.ndarray) and isinstance(b, np.ndarray):
diff_indices = np.where(a != b)
num_diffs = reduce(lambda x, y: x * y,
(len(d) for d in diff_indices), 1)
for idx in islice(zip(*diff_indices), 3):
fileobj.write(indent(u(' at %r:\n') % list(idx), ind))
report_diff_values(fileobj, a[idx], b[idx], ind=ind + 1)
if num_diffs:
fileobj.write(indent(' ...and at %d more indices.\n' %
(num_diffs - 3), ind))
return
padding = max(len(typea.__name__), len(typeb.__name__)) + 3
for line in difflib.ndiff(str(a).splitlines(), str(b).splitlines()):
if line[0] == '-':
line = 'a>' + line[1:]
if typea != typeb:
typename = '(' + typea.__name__ + ') '
line = typename.rjust(padding) + line
elif line[0] == '+':
line = 'b>' + line[1:]
if typea != typeb:
typename = '(' + typeb.__name__ + ') '
line = typename.rjust(padding) + line
else:
line = ' ' + line
if typea != typeb:
line = ' ' * padding + line
fileobj.write(indent(' %s\n' % line.rstrip('\n'), ind))
def report_diff_keyword_attr(fileobj, attr, diffs, keyword, ind=0):
"""
Write a diff between two header keyword values or comments to the specified
file-like object.
"""
if keyword in diffs:
vals = diffs[keyword]
for idx, val in enumerate(vals):
if val is None:
continue
if idx == 0:
dup = ''
else:
dup = '[%d]' % (idx + 1)
fileobj.write(indent(' Keyword %-8s%s has different %s:\n' %
(keyword, dup, attr), ind))
report_diff_values(fileobj, val[0], val[1], ind=ind + 1)
def where_not_allclose(a, b, rtol=1e-5, atol=1e-8):
"""
A version of numpy.allclose that returns the indices where the two arrays
differ, instead of just a boolean value.
"""
# Create fixed mask arrays to handle INF and NaN; currently INF and NaN
# are handled as equivalent
if not np.all(np.isfinite(a)):
a = np.ma.fix_invalid(a).data
if not np.all(np.isfinite(b)):
b = np.ma.fix_invalid(b).data
if atol == 0.0 and rtol == 0.0:
# Use a faster comparison for the most simple (and common) case
return np.where(a != b)
return np.where(np.abs(a - b) > (atol + rtol * np.abs(b)))
|