This file is indexed.

/usr/lib/python2.7/dist-packages/pyfits/fitsrec.py is in python-pyfits 1:3.4-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
import copy
import operator
import warnings
import weakref

import numpy as np

from numpy import char as chararray

from .extern.six import string_types
from .extern.six.moves import xrange, range, reduce

from .column import (ASCIITNULL, FITS2NUMPY, ASCII2NUMPY, ASCII2STR, ColDefs,
                     _AsciiColDefs, _FormatX, _FormatP, _VLF, _get_index,
                     _wrapx, _unwrapx, _makep, Delayed)
from .py3compat import ignored
from .util import encode_ascii, decode_ascii, lazyproperty
from ._compat.weakref import WeakSet


class FITS_record(object):
    """
    FITS record class.

    `FITS_record` is used to access records of the `FITS_rec` object.
    This will allow us to deal with scaled columns.  It also handles
    conversion/scaling of columns in ASCII tables.  The `FITS_record`
    class expects a `FITS_rec` object as input.
    """

    def __init__(self, input, row=0, start=None, end=None, step=None,
                 base=None):
        """
        Parameters
        ----------
        input : array
           The array to wrap.

        row : int, optional
           The starting logical row of the array.

        start : int, optional
           The starting column in the row associated with this object.
           Used for subsetting the columns of the `FITS_rec` object.

        end : int, optional
           The ending column in the row associated with this object.
           Used for subsetting the columns of the `FITS_rec` object.
        """

        self.array = input
        self.row = row
        if base:
            width = len(base)
        else:
            width = self.array._nfields

        s = slice(start, end, step).indices(width)
        self.start, self.end, self.step = s
        self.base = base

    def __getitem__(self, key):
        if isinstance(key, string_types):
            indx = _get_index(self.array.names, key)

            if indx < self.start or indx > self.end - 1:
                raise KeyError("Key '%s' does not exist." % key)
        elif isinstance(key, slice):
            return type(self)(self.array, self.row, key.start, key.stop,
                              key.step, self)
        else:
            indx = self._get_index(key)

            if indx > self.array._nfields - 1:
                raise IndexError('Index out of bounds')

        return self.array.field(indx)[self.row]

    def __setitem__(self, key, value):
        if isinstance(key, string_types):
            indx = _get_index(self.array._coldefs.names, key)

            if indx < self.start or indx > self.end - 1:
                raise KeyError("Key '%s' does not exist." % key)
        elif isinstance(key, slice):
            for indx in xrange(slice.start, slice.stop, slice.step):
                indx = self._get_indx(indx)
                self.array.field(indx)[self.row] = value
        else:
            indx = self._get_index(key)
            if indx > self.array._nfields - 1:
                raise IndexError('Index out of bounds')

        self.array.field(indx)[self.row] = value

    def __getslice__(self, start, end):
        return self[slice(start, end)]

    def __len__(self):
        return len(xrange(self.start, self.end, self.step))

    def __repr__(self):
        """
        Display a single row.
        """

        outlist = []
        for idx in xrange(len(self)):
            outlist.append(repr(self[idx]))
        return '(%s)' % ', '.join(outlist)

    def field(self, field):
        """
        Get the field data of the record.
        """

        return self.__getitem__(field)

    def setfield(self, field, value):
        """
        Set the field data of the record.
        """

        self.__setitem__(field, value)

    @lazyproperty
    def _bases(self):
        bases = [weakref.proxy(self)]
        base = self.base
        while base:
            bases.append(base)
            base = base.base
        return bases

    def _get_index(self, indx):
        indices = np.ogrid[:self.array._nfields]
        for base in reversed(self._bases):
            if base.step < 1:
                s = slice(base.start, None, base.step)
            else:
                s = slice(base.start, base.end, base.step)
            indices = indices[s]
        return indices[indx]


class FITS_rec(np.recarray):
    """
    FITS record array class.

    `FITS_rec` is the data part of a table HDU's data part.  This is a layer
    over the `~numpy.recarray`, so we can deal with scaled columns.

    It inherits all of the standard methods from `numpy.ndarray`.
    """

    _record_type = FITS_record

    def __new__(subtype, input):
        """
        Construct a FITS record array from a recarray.
        """

        # input should be a record array
        if input.dtype.subdtype is None:
            self = np.recarray.__new__(subtype, input.shape, input.dtype,
                                       buf=input.data)
        else:
            self = np.recarray.__new__(subtype, input.shape, input.dtype,
                                       buf=input.data, strides=input.strides)

        self._init()
        if self.dtype.fields:
            self._nfields = len(self.dtype.fields)

        return self

    def __setstate__(self, state):
        meta = state[-1]
        column_state = state[-2]
        state = state[:-2]

        super(FITS_rec, self).__setstate__(state)

        self._col_weakrefs = WeakSet()

        for attr, value in zip(meta, column_state):
            setattr(self, attr, value)

    def __reduce__(self):
        """
        Return a 3-tuple for pickling a FITS_rec. Use the super-class
        functionality but then add in a tuple of FITS_rec-specific
        values that get used in __setstate__.
        """
        super_class = np.ndarray
        reconst_func, reconst_func_args, state = super_class.__reduce__(self)

        # Define FITS_rec-specific attrs that get added to state
        column_state = []
        meta = []

        if '_coldefs' in self.__dict__:
            meta.append('_coldefs')
            column_state.append(self._coldefs.__deepcopy__(None))

        for attr in set(dir(self))-set(dir(self.__class__)):
            # _coldefs can be Delayed, and file objects cannot be
            # picked, it needs to be deepcopied first
            if attr == '_col_weakrefs':
                continue
            else:
                column_state.append(getattr(self, attr))
            meta.append(attr)

        state = state + (column_state, meta)

        return reconst_func, reconst_func_args, state

    def __array_finalize__(self, obj):
        if obj is None:
            return

        if isinstance(obj, FITS_rec) and obj.dtype == self.dtype:
            self._converted = obj._converted
            self._heapoffset = obj._heapoffset
            self._heapsize = obj._heapsize
            self._col_weakrefs = obj._col_weakrefs
            self._coldefs = obj._coldefs
            self._nfields = obj._nfields
            self._gap = obj._gap
            self._uint = obj._uint
        elif self.dtype.fields is not None:
            # This will allow regular ndarrays with fields, rather than
            # just other FITS_rec objects
            self._nfields = len(self.dtype.fields)
            self._converted = {}

            self._heapoffset = getattr(obj, '_heapoffset', 0)
            self._heapsize = getattr(obj, '_heapsize', 0)

            self._gap = getattr(obj, '_gap', 0)
            self._uint = getattr(obj, '_uint', False)
            self._col_weakrefs = WeakSet()
            self._coldefs = ColDefs(self)

            # Work around chicken-egg problem.  Column.array relies on the
            # _coldefs attribute to set up ref back to parent FITS_rec; however
            # in the above line the self._coldefs has not been assigned yet so
            # this fails.  This patches that up...
            for col in self._coldefs:
                del col.array
                col._parent_fits_rec = weakref.ref(self)
        else:
            self._init()

    def _init(self):
        """Initializes internal attributes specific to FITS-isms."""

        self._nfields = 0
        self._converted = {}
        self._heapoffset = 0
        self._heapsize = 0
        self._col_weakrefs = WeakSet()
        self._coldefs = None
        self._gap = 0
        self._uint = False

    @classmethod
    def from_columns(cls, columns, nrows=0, fill=False):
        """
        Given a `ColDefs` object of unknown origin, initialize a new `FITS_rec`
        object.

        .. note::

            This was originally part of the `new_table` function in the table
            module but was moved into a class method since most of its
            functionality always had more to do with initializing a `FITS_rec`
            object than anything else, and much of it also overlapped with
            ``FITS_rec._scale_back``.

        Parameters
        ----------
        columns : sequence of `Column` or a `ColDefs`
            The columns from which to create the table data.  If these
            columns have data arrays attached that data may be used in
            initializing the new table.  Otherwise the input columns
            will be used as a template for a new table with the requested
            number of rows.

        nrows : int
            Number of rows in the new table.  If the input columns have data
            associated with them, the size of the largest input column is used.
            Otherwise the default is 0.

        fill : bool
            If `True`, will fill all cells with zeros or blanks.  If
            `False`, copy the data from input, undefined cells will still
            be filled with zeros/blanks.
        """

        if not isinstance(columns, ColDefs):
            columns = ColDefs(columns)

        # read the delayed data
        for column in columns:
            arr = column.array
            if isinstance(arr, Delayed):
                if arr.hdu.data is None:
                    column.array = None
                else:
                    column.array = _get_recarray_field(arr.hdu.data,
                                                       arr.field)
        # Reset columns._arrays (which we may want to just do away with
        # altogether
        del columns._arrays

        # use the largest column shape as the shape of the record
        if nrows == 0:
            for arr in columns._arrays:
                if arr is not None:
                    dim = arr.shape[0]
                else:
                    dim = 0
                if dim > nrows:
                    nrows = dim

        raw_data = np.empty(columns.dtype.itemsize * nrows, dtype=np.uint8)
        raw_data.fill(ord(columns._padding_byte))
        data = np.recarray(nrows, dtype=columns.dtype, buf=raw_data).view(cls)

        # Make sure the data is a listener for changes to the columns
        columns._add_listener(data)

        # Previously this assignment was made from hdu.columns, but that's a
        # bug since if a _TableBaseHDU has a FITS_rec in its .data attribute
        # the _TableBaseHDU.columns property is actually returned from
        # .data._coldefs, so this assignment was circular!  Don't make that
        # mistake again.
        # All of this is an artifact of the fragility of the FITS_rec class,
        # and that it can't just be initialized by columns...
        data._coldefs = columns

        # If fill is True we don't copy anything from the column arrays.  We're
        # just using them as a template, and returning a table filled with
        # zeros/blanks
        if fill:
            return data

        # Otherwise we have to fill the recarray with data from the input
        # columns
        for idx, column in enumerate(columns):
            # For each column in the ColDef object, determine the number of
            # rows in that column.  This will be either the number of rows in
            # the ndarray associated with the column, or the number of rows
            # given in the call to this function, which ever is smaller.  If
            # the input FILL argument is true, the number of rows is set to
            # zero so that no data is copied from the original input data.
            arr = column.array

            if arr is None:
                array_size = 0
            else:
                array_size = len(arr)

            n = min(array_size, nrows)

            # TODO: At least *some* of this logic is mostly redundant with the
            # _convert_foo methods in this class; see if we can eliminate some
            # of that duplication.

            if not n:
                # The input column had an empty array, so just use the fill
                # value
                continue

            field = _get_recarray_field(data, idx)
            name = column.name
            fitsformat = column.format
            recformat = fitsformat.recformat

            outarr = field[:n]
            inarr = arr[:n]

            if isinstance(recformat, _FormatX):
                # Data is a bit array
                if inarr.shape[-1] == recformat.repeat:
                    _wrapx(inarr, outarr, recformat.repeat)
                    continue
            elif isinstance(recformat, _FormatP):
                data._cache_field(name, _makep(inarr, field, recformat,
                                               nrows=nrows))
                continue
            # TODO: Find a better way of determining that the column is meant
            # to be FITS L formatted
            elif recformat[-2:] == FITS2NUMPY['L'] and inarr.dtype == bool:
                # column is boolean
                # The raw data field should be filled with either 'T' or 'F'
                # (not 0).  Use 'F' as a default
                field[:] = ord('F')
                # Also save the original boolean array in data._converted so
                # that it doesn't have to be re-converted
                converted = np.zeros(field.shape, dtype=bool)
                converted[:n] = inarr
                data._cache_field(name, converted)
                # TODO: Maybe this step isn't necessary at all if _scale_back
                # will handle it?
                inarr = np.where(inarr == False, ord('F'), ord('T'))
            elif (columns[idx]._physical_values and
                    columns[idx]._pseudo_unsigned_ints):
                # Temporary hack...
                bzero = column.bzero
                converted = np.zeros(field.shape, dtype=inarr.dtype)
                converted[:n] = inarr
                data._cache_field(name, converted)
                if n < nrows:
                    # Pre-scale rows below the input data
                    field[n:] = -bzero

                inarr = inarr - bzero
            elif isinstance(columns, _AsciiColDefs):
                # Regardless whether the format is character or numeric, if the
                # input array contains characters then it's already in the raw
                # format for ASCII tables
                if fitsformat._pseudo_logical:
                    # Hack to support converting from 8-bit T/F characters
                    # Normally the column array is a chararray of 1 character
                    # strings, but we need to view it as a normal ndarray of
                    # 8-bit ints to fill it with ASCII codes for 'T' and 'F'
                    outarr = field.view(np.uint8, np.ndarray)[:n]
                elif arr.dtype.kind not in ('S', 'U'):
                    # Set up views of numeric columns with the appropriate
                    # numeric dtype
                    # Fill with the appropriate blanks for the column format
                    data._cache_field(name, np.zeros(nrows, dtype=arr.dtype))
                    outarr = data._converted[name][:n]

                outarr[:] = inarr
                continue

            if inarr.shape != outarr.shape:
                if (inarr.dtype.kind == outarr.dtype.kind and
                        inarr.dtype.kind in ('U', 'S') and
                        inarr.dtype != outarr.dtype):

                    inarr_rowsize = inarr[0].size
                    inarr = inarr.flatten().view(outarr.dtype)

                # This is a special case to handle input arrays with
                # non-trivial TDIMn.
                # By design each row of the outarray is 1-D, while each row of
                # the input array may be n-D
                if outarr.ndim > 1:
                    # The normal case where the first dimension is the rows
                    inarr_rowsize = inarr[0].size
                    inarr = inarr.reshape((n, inarr_rowsize))
                    outarr[:, :inarr_rowsize] = inarr
                else:
                    # Special case for strings where the out array only has one
                    # dimension (the second dimension is rolled up into the
                    # strings
                    outarr[:n] = inarr.ravel()
            else:
                outarr[:] = inarr

        # Now replace the original column array references with the new
        # fields
        # This is required to prevent the issue reported in
        # https://github.com/spacetelescope/PyFITS/issues/99
        for idx in range(len(columns)):
            columns._arrays[idx] = data.field(idx)

        return data

    def __repr__(self):
        # Force use of the normal ndarray repr (rather than the new
        # one added for recarray in Numpy 1.10) for backwards compat
        return np.ndarray.__repr__(self)

    def __getitem__(self, key):
        if self._coldefs is None:
            return super(FITS_rec, self).__getitem__(key)

        if isinstance(key, string_types):
            return self.field(key)
        elif isinstance(key, (slice, np.ndarray, tuple, list)):
            # Have to view as a recarray then back as a FITS_rec, otherwise the
            # circular reference fix/hack in FITS_rec.field() won't preserve
            # the slice
            subtype = type(self)
            out = self.view(np.recarray).__getitem__(key).view(subtype)
            out._coldefs = ColDefs(self._coldefs)
            arrays = []
            out._converted = {}
            for idx, name in enumerate(self._coldefs.names):
                #
                # Store the new arrays for the _coldefs object
                #
                arrays.append(self._coldefs._arrays[idx][key])

                # Ensure that the sliced FITS_rec will view the same scaled
                # columns as the original; this is one of the few cases where
                # it is not necessary to use _cache_field()
                if name in self._converted:
                    dummy = self._converted[name]
                    field = np.ndarray.__getitem__(dummy, key)
                    out._converted[name] = field

            out._coldefs._arrays = arrays
            return out

        # if not a slice, do this because Record has no __getstate__.
        # also more efficient.
        else:
            if isinstance(key, int) and key >= len(self):
                raise IndexError("Index out of bounds")

            newrecord = self._record_type(self, key)
            return newrecord

    def __setitem__(self, key, value):
        if self._coldefs is None:
            return super(FITS_rec, self).__setitem__(key, value)

        if isinstance(key, string_types):
            self[key][:] = value
            return

        if isinstance(key, slice):
            end = min(len(self), key.stop or len(self))
            end = max(0, end)
            start = max(0, key.start or 0)
            end = min(end, start + len(value))

            for idx in range(start, end):
                self.__setitem__(idx, value[idx - start])
            return

        if isinstance(value, FITS_record):
            for idx in range(self._nfields):
                self.field(self.names[idx])[key] = value.field(self.names[idx])
        elif isinstance(value, (tuple, list, np.void)):
            if self._nfields == len(value):
                for idx in range(self._nfields):
                    self.field(idx)[key] = value[idx]
            else:
                raise ValueError('Input tuple or list required to have %s '
                                 'elements.' % self._nfields)
        else:
            raise TypeError('Assignment requires a FITS_record, tuple, or '
                            'list as input.')

    def __getslice__(self, start, end):
        return self[slice(start, end)]

    def __setslice__(self, start, end, value):
        self[slice(start, end)] = value

    def copy(self, order='C'):
        """
        The Numpy documentation lies; `numpy.ndarray.copy` is not equivalent to
        `numpy.copy`.  Differences include that it re-views the copied array as
        self's ndarray subclass, as though it were taking a slice; this means
        ``__array_finalize__`` is called and the copy shares all the array
        attributes (including ``._converted``!).  So we need to make a deep
        copy of all those attributes so that the two arrays truly do not share
        any data.
        """

        new = super(FITS_rec, self).copy(order=order)
        new_dict = dict(self.__dict__)
        del new_dict['_col_weakrefs']
        new.__dict__ = copy.deepcopy(new_dict)

        # Re-fill _col_weakrefs
        new.__dict__['_col_weakrefs'] = WeakSet()
        new._coldefs = new._coldefs
        return new

    @property
    def columns(self):
        """
        A user-visible accessor for the coldefs.

        See https://aeon.stsci.edu/ssb/trac/pyfits/ticket/44
        """

        return self._coldefs

    @property
    def _coldefs(self):
        # This used to be a normal internal attribute, but it was changed to a
        # property as a quick and transparent way to work around the reference
        # leak bug fixed in https://github.com/astropy/astropy/pull/4539
        #
        # See the long comment in the Column.array property for more details
        # on this.  But in short, FITS_rec now has a ._col_weakrefs attribute
        # which is a WeakSet of weakrefs to each Column in _coldefs.
        #
        # So whenever ._coldefs is set we also add each Column in the ColDefs
        # to the weakrefs set.  This is an easy way to find out if a Column has
        # any references to it external to the FITS_rec (i.e. a user assigned a
        # column to a variable).  If the column is still in _col_weakrefs then
        # there are other references to it external to this FITS_rec.  We use
        # that information in __del__ to save off copies of the array data
        # for those columns to their Column.array property before our memory
        # is freed.
        return self.__dict__.get('_coldefs')

    @_coldefs.setter
    def _coldefs(self, cols):
        self.__dict__['_coldefs'] = cols
        if isinstance(cols, ColDefs):
            for col in cols.columns:
                self._col_weakrefs.add(col)

    @_coldefs.deleter
    def _coldefs(self):
        try:
            del self.__dict__['_coldefs']
        except KeyError as exc:
            raise AttributeError(exc.args[0])

    def __del__(self):
        try:
            del self._coldefs
        except AttributeError:
            pass
        else:
            if self.dtype.fields is not None:
                for col in self._col_weakrefs:
                    if isinstance(col.array, np.ndarray):
                        col.array = col.array.copy()

    @property
    def names(self):
        """List of column names."""

        if hasattr(self, '_coldefs') and self._coldefs is not None:
            return self._coldefs.names
        elif self.dtype.fields:
            return list(self.dtype.names)
        else:
            return None

    @property
    def formats(self):
        """List of column FITS foramts."""

        if hasattr(self, '_coldefs') and self._coldefs is not None:
            return self._coldefs.formats

        return None

    @property
    def _raw_itemsize(self):
        """
        Returns the size of row items that would be written to the raw FITS
        file, taking into account the possibility of unicode columns being
        compactified.

        Currently for internal use only.
        """

        if _has_unicode_fields(self):
            total_itemsize = 0
            for field in self.dtype.fields.values():
                itemsize = field[0].itemsize
                if field[0].kind == 'U':
                    itemsize = itemsize // 4
                total_itemsize += itemsize
            return total_itemsize
        else:
            # Just return the normal itemsize
            return self.itemsize

    def field(self, key):
        """
        A view of a `Column`'s data as an array.
        """

        # NOTE: The *column* index may not be the same as the field index in
        # the recarray, if the column is a phantom column
        column = self.columns[key]
        name = column.name
        format = column.format

        if format.dtype.itemsize == 0:
            warnings.warn(
                'Field %r has a repeat count of 0 in its format code, '
                'indicating an empty field.' % key)
            return np.array([], dtype=format.dtype)

        # If field's base is a FITS_rec, we can run into trouble because it
        # contains a reference to the ._coldefs object of the original data;
        # this can lead to a circular reference; see ticket #49
        base = self
        while (isinstance(base, FITS_rec) and
                isinstance(base.base, np.recarray)):
            base = base.base
        # base could still be a FITS_rec in some cases, so take care to
        # use rec.recarray.field to avoid a potential infinite
        # recursion
        field = _get_recarray_field(base, name)

        if name not in self._converted:
            recformat = format.recformat
            # TODO: If we're now passing the column to these subroutines, do we
            # really need to pass them the recformat?
            if isinstance(recformat, _FormatP):
                # for P format
                converted = self._convert_p(column, field, recformat)
            else:
                # Handle all other column data types which are fixed-width
                # fields
                converted = self._convert_other(column, field, recformat)

            # Note: Never assign values directly into the self._converted dict;
            # always go through self._cache_field; this way self._converted is
            # only used to store arrays that are not already direct views of
            # our own data.
            self._cache_field(name, converted)
            return converted

        return self._converted[name]

    def _cache_field(self, name, field):
        """
        Do not store fields in _converted if one of its bases is self,
        or if it has a common base with self.

        This results in a reference cycle that cannot be broken since
        ndarrays do not participate in cyclic garbage collection.
        """

        base = field
        while True:
            self_base = self
            while True:
                if self_base is base:
                    return

                if getattr(self_base, 'base', None) is not None:
                    self_base = self_base.base
                else:
                    break

            if getattr(base, 'base', None) is not None:
                base = base.base
            else:
                break

        self._converted[name] = field

    def _update_column_attribute_changed(self, column, idx, attr, old_value,
                                         new_value):
        """
        Update how the data is formatted depending on changes to column
        attributes initiated by the user through the `Column` interface.

        Dispatches column attribute change notifications to individual methods
        for each attribute ``_update_column_<attr>``
        """

        method_name = '_update_column_{0}'.format(attr)
        if hasattr(self, method_name):
            # Right now this is so we can be lazy and not implement updaters
            # for every attribute yet--some we may not need at all, TBD
            getattr(self, method_name)(column, idx, old_value, new_value)

    def _update_column_name(self, column, idx, old_name, name):
        """Update the dtype field names when a column name is changed."""

        dtype = self.dtype
        # Updating the names on the dtype should suffice
        dtype.names = dtype.names[:idx] + (name,) + dtype.names[idx + 1:]

    def _convert_x(self, field, recformat):
        """Convert a raw table column to a bit array as specified by the
        FITS X format.
        """

        dummy = np.zeros(self.shape + (recformat.repeat,), dtype=np.bool_)
        _unwrapx(field, dummy, recformat.repeat)
        return dummy

    def _convert_p(self, column, field, recformat):
        """Convert a raw table column of FITS P or Q format descriptors
        to a VLA column with the array data returned from the heap.
        """

        dummy = _VLF([None] * len(self), dtype=recformat.dtype)
        raw_data = self._get_raw_data()

        if raw_data is None:
            raise IOError(
                "Could not find heap data for the %r variable-length "
                "array column." % column.name)

        for idx in range(len(self)):
            offset = field[idx, 1] + self._heapoffset
            count = field[idx, 0]

            if recformat.dtype == 'a':
                dt = np.dtype(recformat.dtype + str(1))
                arr_len = count * dt.itemsize
                da = raw_data[offset:offset + arr_len].view(dt)
                da = np.char.array(da.view(dtype=dt), itemsize=count)
                dummy[idx] = decode_ascii(da)
            else:
                dt = np.dtype(recformat.dtype)
                arr_len = count * dt.itemsize
                dummy[idx] = raw_data[offset:offset + arr_len].view(dt)
                dummy[idx].dtype = dummy[idx].dtype.newbyteorder('>')
                # Each array in the field may now require additional
                # scaling depending on the other scaling parameters
                # TODO: The same scaling parameters apply to every
                # array in the column so this is currently very slow; we
                # really only need to check once whether any scaling will
                # be necessary and skip this step if not
                # TODO: Test that this works for X format; I don't think
                # that it does--the recformat variable only applies to the P
                # format not the X format
                dummy[idx] = self._convert_other(column, dummy[idx],
                                                 recformat)

        return dummy

    def _convert_ascii(self, column, field):
        """
        Special handling for ASCII table columns to convert columns containing
        numeric types to actual numeric arrays from the string representation.
        """

        format = column.format
        recformat = ASCII2NUMPY[format[0]]
        # if the string = TNULL, return ASCIITNULL
        nullval = str(column.null).strip().encode('ascii')
        if len(nullval) > format.width:
            nullval = nullval[:format.width]

        dummy = np.char.ljust(field, format.width)
        dummy = np.char.replace(dummy, encode_ascii('D'), encode_ascii('E'))
        null_fill = encode_ascii(str(ASCIITNULL).rjust(format.width))
        dummy = np.where(np.char.strip(dummy) == nullval, null_fill, dummy)

        try:
            dummy = np.array(dummy, dtype=recformat)
        except ValueError as exc:
            indx = self._coldefs.names.index(column.name)
            raise ValueError(
                '%s; the header may be missing the necessary TNULL%d '
                'keyword or the table contains invalid data' %
                (exc, indx + 1))

        return dummy

    def _convert_other(self, column, field, recformat):
        """Perform conversions on any other fixed-width column data types.

        This may not perform any conversion at all if it's not necessary, in
        which case the original column array is returned.
        """

        if isinstance(recformat, _FormatX):
            # special handling for the X format
            return self._convert_x(field, recformat)

        (_str, _bool, _number, _scale, _zero, bscale, bzero, dim) = \
            self._get_scale_factors(column)

        indx = self._coldefs.names.index(column.name)

        # ASCII table, convert strings to numbers
        # TODO:
        # For now, check that these are ASCII columns by checking the coldefs
        # type; in the future all columns (for binary tables, ASCII tables, or
        # otherwise) should "know" what type they are already and how to handle
        # converting their data from FITS format to native format and vice
        # versa...
        if not _str and isinstance(self._coldefs, _AsciiColDefs):
            field = self._convert_ascii(column, field)

        # Test that the dimensions given in dim are sensible; otherwise
        # display a warning and ignore them
        if dim:
            # See if the dimensions already match, if not, make sure the
            # number items will fit in the specified dimensions
            if field.ndim > 1:
                actual_shape = field.shape[1:]
                if _str:
                    actual_shape = actual_shape + (field.itemsize,)
            else:
                actual_shape = field.shape[0]

            if dim == actual_shape:
                # The array already has the correct dimensions, so we
                # ignore dim and don't convert
                dim = None
            else:
                nitems = reduce(operator.mul, dim)
                if _str:
                    actual_nitems = field.itemsize
                elif len(field.shape) == 1:  # No repeat count in TFORMn, equivalent to 1
                    actual_nitems = 1
                else:
                    actual_nitems = field.shape[1]
                if nitems > actual_nitems:
                    warnings.warn(
                        'TDIM%d value %s does not fit with the size of '
                        'the array items (%d).  TDIM%d will be ignored.'
                        % (indx + 1, self._coldefs.dims[indx],
                           actual_nitems, indx + 1))
                    dim = None

        # further conversion for both ASCII and binary tables
        # For now we've made columns responsible for *knowing* whether their
        # data has been scaled, but we make the FITS_rec class responsible for
        # actually doing the scaling
        # TODO: This also needs to be fixed in the effort to make Columns
        # responsible for scaling their arrays to/from FITS native values
        if not column.ascii and column.format.p_format:
            format_code = column.format.p_format
        else:
            # TODO: Rather than having this if/else it might be nice if the
            # ColumnFormat class had an attribute guaranteed to give the format
            # of actual values in a column regardless of whether the true
            # format is something like P or Q
            format_code = column.format.format

        if (_number and (_scale or _zero) and not column._physical_values):
            # This is to handle pseudo unsigned ints in table columns
            # TODO: For now this only really works correctly for binary tables
            # Should it work for ASCII tables as well?
            if self._uint:
                if bzero == 2**15 and format_code == 'I':
                    field = np.array(field, dtype=np.uint16)
                elif bzero == 2**31 and format_code == 'J':
                    field = np.array(field, dtype=np.uint32)
                elif bzero == 2**63 and format_code == 'K':
                    field = np.array(field, dtype=np.uint64)
                    bzero64 = np.uint64(2 ** 63)
                else:
                    field = np.array(field, dtype=np.float64)
            else:
                field = np.array(field, dtype=np.float64)

            if _scale:
                np.multiply(field, bscale, field)
            if _zero:
                if self._uint and format_code == 'K':
                    # There is a chance of overflow, so be careful
                    test_overflow = field.copy()
                    try:
                        test_overflow += bzero64
                    except OverflowError:
                        warnings.warn(
                            "Overflow detected while applying TZERO{0:d}. "
                            "Returning unscaled data.".format(indx + 1))
                    else:
                        field = test_overflow
                else:
                    field += bzero
        elif _bool and field.dtype != bool:
            field = np.equal(field, ord('T'))
        elif _str:
            with ignored(UnicodeDecodeError):
                field = decode_ascii(field)

        if dim:
            # Apply the new field item dimensions
            nitems = reduce(operator.mul, dim)
            if field.ndim > 1:
                field = field[:, :nitems]
            if _str:
                fmt = field.dtype.char
                dtype = ('|%s%d' % (fmt, dim[-1]), dim[:-1])
                field.dtype = dtype
            else:
                field.shape = (field.shape[0],) + dim

        return field

    def _get_heap_data(self):
        """
        Returns a pointer into the table's raw data to its heap (if present).

        This is returned as a numpy byte array.
        """

        if self._heapsize:
            raw_data = self._get_raw_data().view(np.ubyte)
            heap_end = self._heapoffset + self._heapsize
            return raw_data[self._heapoffset:heap_end]
        else:
            return np.array([], dtype=np.ubyte)

    def _get_raw_data(self):
        """
        Returns the base array of self that "raw data array" that is the
        array in the format that it was first read from a file before it was
        sliced or viewed as a different type in any way.

        This is determined by walking through the bases until finding one that
        has at least the same number of bytes as self, plus the heapsize.  This
        may be the immediate .base but is not always.  This is used primarily
        for variable-length array support which needs to be able to find the
        heap (the raw data *may* be larger than nbytes + heapsize if it
        contains a gap or padding).

        May return ``None`` if no array resembling the "raw data" according to
        the stated criteria can be found.
        """

        raw_data_bytes = self.nbytes + self._heapsize
        base = self
        while hasattr(base, 'base') and base.base is not None:
            base = base.base
            if hasattr(base, 'nbytes') and base.nbytes >= raw_data_bytes:
                return base

    def _get_scale_factors(self, column):
        """Get all the scaling flags and factors for one column."""

        # TODO: Maybe this should be a method/property on Column?  Or maybe
        # it's not really needed at all...
        _str = column.format.format == 'A'
        _bool = column.format.format == 'L'

        _number = not (_bool or _str)
        bscale = column.bscale
        bzero = column.bzero

        _scale = bscale not in ('', None, 1)
        _zero = bzero not in ('', None, 0)

        # ensure bscale/bzero are numbers
        if not _scale:
            bscale = 1
        if not _zero:
            bzero = 0

        # column._dims gives a tuple, rather than column.dim which returns the
        # original string format code from the FITS header...
        dim = column._dims

        return (_str, _bool, _number, _scale, _zero, bscale, bzero, dim)

    def _scale_back(self, update_heap_pointers=True):
        """
        Update the parent array, using the (latest) scaled array.

        If ``update_heap_pointers`` is `False`, this will leave all the heap
        pointers in P/Q columns as they are verbatim--it only makes sense to do
        this if there is already data on the heap and it can be guaranteed that
        that data has not been modified, and there is not new data to add to
        the heap.  Currently this is only used as an optimization for
        CompImageHDU that does its own handling of the heap.
        """

        # Running total for the new heap size
        heapsize = 0

        for indx, name in enumerate(self.dtype.names):
            column = self._coldefs[indx]
            recformat = column.format.recformat
            raw_field = _get_recarray_field(self, indx)

            # add the location offset of the heap area for each
            # variable length column
            if isinstance(recformat, _FormatP):
                # Irritatingly, this can return a different dtype than just
                # doing np.dtype(recformat.dtype); but this returns the results
                # that we want.  For example if recformat.dtype is 'a' we want
                # an array of characters.
                dtype = np.array([], dtype=recformat.dtype).dtype

                if update_heap_pointers and name in self._converted:
                    # The VLA has potentially been updated, so we need to
                    # update the array descriptors
                    raw_field[:] = 0  # reset
                    npts = [len(arr) for arr in self._converted[name]]

                    raw_field[:len(npts), 0] = npts
                    raw_field[1:, 1] = (np.add.accumulate(raw_field[:-1, 0]) *
                                        dtype.itemsize)
                    raw_field[:, 1][:] += heapsize

                heapsize += raw_field[:, 0].sum() * dtype.itemsize
                # Even if this VLA has not been read or updated, we need to
                # include the size of its constituent arrays in the heap size
                # total

            if isinstance(recformat, _FormatX) and name in self._converted:
                _wrapx(self._converted[name], raw_field, recformat.repeat)
                continue

            _str, _bool, _number, _scale, _zero, bscale, bzero, _ = \
                self._get_scale_factors(column)

            field = self._converted.get(name, raw_field)

            # conversion for both ASCII and binary tables
            if _number or _str:
                if _number and (_scale or _zero) and column._physical_values:
                    dummy = field.copy()
                    if _zero:
                        dummy -= bzero
                    if _scale:
                        dummy /= bscale
                    # This will set the raw values in the recarray back to
                    # their non-physical storage values, so the column should
                    # be mark is not scaled
                    column._physical_values = False
                elif _str or isinstance(self._coldefs, _AsciiColDefs):
                    dummy = field
                else:
                    continue

                # ASCII table, convert numbers to strings
                if isinstance(self._coldefs, _AsciiColDefs):
                    self._scale_back_ascii(indx, dummy, raw_field)
                # binary table string column
                elif isinstance(raw_field, chararray.chararray):
                    self._scale_back_strings(indx, dummy, raw_field)
                # all other binary table columns
                else:
                    if len(raw_field) and isinstance(raw_field[0],
                                                     np.integer):
                        dummy = np.around(dummy)

                    if raw_field.shape == dummy.shape:
                        raw_field[:] = dummy
                    else:
                        # Reshaping the data is necessary in cases where the
                        # TDIMn keyword was used to shape a column's entries
                        # into arrays
                        raw_field[:] = dummy.ravel().view(raw_field.dtype)

                del dummy

            # ASCII table does not have Boolean type
            elif _bool and name in self._converted:
                choices = (np.array([ord('F')], dtype=np.int8)[0],
                           np.array([ord('T')], dtype=np.int8)[0])
                raw_field[:] = np.choose(field, choices)

        # Store the updated heapsize
        self._heapsize = heapsize

    def _scale_back_strings(self, col_idx, input_field, output_field):
        # There are a few possibilities this has to be able to handle properly
        # The input_field, which comes from the _converted column is of dtype
        # 'Sn' (where n in string length) on Python 2--this is maintain the
        # existing user expectation of not being returned Python 2-style
        # unicode strings.  One Python 3 the array in _converted is of dtype
        # 'Un' so that elements read out of the array are normal Python 3 str
        # objects (i.e. unicode strings)
        #
        # At the other end the *output_field* may also be of type 'S' or of
        # type 'U'.  It will *usually* be of type 'S' (regardless of Python
        # version) because when reading an existing FITS table the raw data is
        # just ASCII strings, and represented in Numpy as an S array.
        # However, when a user creates a new table from scratch, they *might*
        # pass in a column containing unicode strings (dtype 'U'), especially
        # on Python 3 where this will be the default.  Therefore the
        # output_field of the raw array is actually a unicode array.  But we
        # still want to make sure the data is encodable as ASCII.  Later when
        # we write out the array we use, in the dtype 'U' case, a different
        # write routine that writes row by row and encodes any 'U' columns to
        # ASCII.

        # If the output_field is non-ASCII we will worry about ASCII encoding
        # later when writing; otherwise we can do it right here
        if input_field.dtype.kind == 'U' and output_field.dtype.kind == 'S':
            try:
                _ascii_encode(input_field, out=output_field)
            except _UnicodeArrayEncodeError as exc:
                raise ValueError(
                    "Could not save column '{0}': Contains characters that "
                    "cannot be encoded as ASCII as required by FITS, starting "
                    "at the index {1!r} of the column, and the index {2} of "
                    "the string at that location.".format(
                        self._coldefs.names[col_idx],
                        exc.index[0] if len(exc.index) == 1 else exc.index,
                        exc.start))
        else:
            # Otherwise go ahead and do a direct copy into--if both are type
            # 'U' we'll handle encoding later
            input_field = input_field.flatten().view(output_field.dtype)
            output_field.flat[:] = input_field

        # Ensure that blanks at the end of each string are
        # converted to nulls instead of spaces, see Trac #15
        # and #111
        _rstrip_inplace(output_field)


    def _scale_back_ascii(self, col_idx, input_field, output_field):
        """
        Convert internal array values back to ASCII table representation.

        The ``input_field`` is the internal representation of the values, and
        the ``output_field`` is the character array representing the ASCII
        output that will be written.
        """

        starts = self._coldefs.starts[:]
        spans = self._coldefs.spans
        format = self._coldefs.formats[col_idx]

        # The the index of the "end" column of the record, beyond
        # which we can't write
        end = super(FITS_rec, self).field(-1).itemsize
        starts.append(end + starts[-1])

        if col_idx > 0:
            lead = starts[col_idx] - starts[col_idx - 1] - spans[col_idx - 1]
        else:
            lead = 0

        if lead < 0:
            warnings.warn('Column %r starting point overlaps the previous '
                          'column.' % (col_idx + 1))

        trail = starts[col_idx + 1] - starts[col_idx] - spans[col_idx]

        if trail < 0:
            warnings.warn('Column %r ending point overlaps the next '
                          'column.' % (col_idx + 1))

        # TODO: It would be nice if these string column formatting
        # details were left to a specialized class, as is the case
        # with FormatX and FormatP
        if 'A' in format:
            _pc = '%-'
        else:
            _pc = '%'

        fmt = ''.join([_pc, format[1:], ASCII2STR[format[0]],
                       (' ' * trail)])

        # Even if the format precision is 0, we should output a decimal point
        # as long as there is space to do so--not including a decimal point in
        # a float value is discouraged by the FITS Standard
        trailing_decimal = (format.precision == 0 and
                            format.format in ('F', 'E', 'D'))

        # not using numarray.strings's num2char because the
        # result is not allowed to expand (as C/Python does).
        for jdx, value in enumerate(input_field):
            value = fmt % value
            if len(value) > starts[col_idx + 1] - starts[col_idx]:
                raise ValueError(
                    "Value %r does not fit into the output's itemsize of "
                    "%s." % (value, spans[col_idx]))

            if trailing_decimal and value[0] == ' ':
                # We have some extra space in the field for the trailing
                # decimal point
                value = value[1:] + '.'

            output_field[jdx] = value

        # Replace exponent separator in floating point numbers
        if 'D' in format:
            output_field.replace(encode_ascii('E'), encode_ascii('D'))


def _get_recarray_field(array, key):
    """
    Compatibility function for using the recarray base class's field method.
    This incorporates the legacy functionality of returning string arrays as
    Numeric-style chararray objects.
    """

    # Numpy >= 1.10.dev recarray no longer returns chararrays for strings
    # This is currently needed for backwards-compatibility and for
    # automatic truncation of trailing whitespace
    field = np.recarray.field(array, key)
    if (field.dtype.char in ('S', 'U') and
            not isinstance(field, chararray.chararray)):
        field = field.view(chararray.chararray)
    return field


def _rstrip_inplace(array, chars=None):
    """
    Performs an in-place rstrip operation on string arrays.
    This is necessary since the built-in `np.char.rstrip` in Numpy does not
    perform an in-place calculation.  This can be removed if ever
    https://github.com/numpy/numpy/issues/6303 is implemented (however, for
    the purposes of this module the only in-place vectorized string functions
    we need are rstrip and encode).
    """

    for item in np.nditer(array, flags=['zerosize_ok'],
                                 op_flags=['readwrite']):
        item[...] = item.item().rstrip(chars)


class _UnicodeArrayEncodeError(UnicodeEncodeError):
    def __init__(self, encoding, object_, start, end, reason, index):
        super(_UnicodeArrayEncodeError, self).__init__(encoding, object_,
                start, end, reason)
        self.index = index


def _ascii_encode(inarray, out=None):
    """
    Takes a unicode array and fills the output string array with the ASCII
    encodings (if possible) of the elements of the input array.  The two arrays
    must be the same size (though not necessarily the same shape).

    This is like an inplace version of `np.char.encode` though simpler since
    it's only limited to ASCII, and hence the size of each character is
    guaranteed to be 1 byte.

    If any strings are non-ASCII an UnicodeArrayEncodeError is raised--this is
    just a `UnicodeEncodeError` with an additional attribute for the index of
    the item that couldn't be encoded.
    """

    out_dtype = np.dtype(('S{0}'.format(inarray.dtype.itemsize // 4),
                         inarray.dtype.shape))
    if out is not None:
        out = out.view(out_dtype)

    op_dtypes = [inarray.dtype, out_dtype]
    op_flags = [['readonly'], ['writeonly', 'allocate']]
    it = np.nditer([inarray, out], op_dtypes=op_dtypes,
                   op_flags=op_flags, flags=['zerosize_ok'])

    try:
        for initem, outitem in it:
            outitem[...] = initem.item().encode('ascii')
    except UnicodeEncodeError as exc:
        index = np.unravel_index(it.iterindex, inarray.shape)
        raise _UnicodeArrayEncodeError(*(exc.args + (index,)))

    return it.operands[1]


def _has_unicode_fields(array):
    """
    Returns True if any fields in a structured array have Unicode dtype.
    """

    dtypes = (d[0] for d in array.dtype.fields.values())
    return any(d.kind == 'U' for d in dtypes)