This file is indexed.

/usr/lib/python3-escript/esys/downunder/datasources.py is in python3-escript 5.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
##############################################################################
#
# Copyright (c) 2003-2016 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################

"""Data readers/providers for inversions"""

from __future__ import print_function, division

__copyright__="""Copyright (c) 2003-2016 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"

__all__ = ['DataSource', 'ErMapperData', 'NumpyData', \
        'SyntheticDataBase', 'SyntheticFeatureData', 'SyntheticData',
        'SmoothAnomaly', 'SeismicSource']

import logging
import numpy as np
import tempfile
from esys.escript import ReducedFunction, FunctionOnBoundary, Scalar
from esys.escript import unitsSI as U
from esys.escript.linearPDEs import LinearSinglePDE
from esys.escript.util import *
from .coordinates import ReferenceSystem,  CartesianReferenceSystem

HAS_RIPLEY = True
try:
    from esys.ripley import *
except ImportError as e:
    HAS_RIPLEY = False

try:
    from scipy.io.netcdf import netcdf_file
    __all__ += ['NetCdfData']
except:
    pass

try:
    import pyproj
    HAVE_PYPROJ=True
except:
    HAVE_PYPROJ=False

try:
    import osgeo.osr
    HAVE_GDAL=True
except ImportError:
    HAVE_GDAL=False

def getUTMZone(lon, lat, wkt_string=None):
    """
    """

    logger = logging.getLogger('inv.datasources.getUTMZone')
    zone = 0

    nplon=np.array(lon)
    nplat=np.array(lat)
    if np.abs(nplon).max()>360.0 or np.abs(nplat).max()>180.0:
        if HAVE_GDAL and (wkt_string is not None):
            srs = osgeo.osr.SpatialReference()
            result=srs.ImportFromWkt(wkt_string)
            if result==0:
                zone = srs.GetUTMZone()
    else:
        # determine UTM zone from the input data
        zone = int(np.median((np.floor((nplon + 180)/6) + 1) % 60))

    logger.debug("Determined UTM zone %d."%zone)
    return zone

def LatLonToUTM(lon, lat, wkt_string=None):
    """
    Converts one or more longitude,latitude pairs to the corresponding x,y
    coordinates in the Universal Transverse Mercator projection.

    :note: The ``pyproj`` module is required unless the input coordinates are
           determined to be already projected. If it is not found an exception
           is raised.
    :note: If `wkt_string` is not given or invalid or the ``gdal`` module is
           not available to convert the string, then the input values are
           assumed to be using the Clarke 1866 ellipsoid.

    :param lon: longitude value(s)
    :type lon: ``float``, ``list``, ``tuple``, or ``numpy.array``
    :param lat: latitude value(s)
    :type lat: ``float``, ``list``, ``tuple``, or ``numpy.array``
    :param wkt_string: Well-known text (WKT) string describing the coordinate
                       system used. The ``gdal`` module is used to convert
                       the string to the corresponding Proj4 string.
    :type wkt_string: ``str``
    :rtype: ``tuple``
    """

    logger = logging.getLogger('inv.datasources.LatLonToUTM')

    nplon=np.array(lon)
    nplat=np.array(lat)
    zone = getUTMZone(nplon, nplat, wkt_string)

    if np.abs(nplon).max()>360.0 or np.abs(nplat).max()>180.0:
        logger.debug('Coordinates appear to be projected. Passing through.')
        return lon,lat,zone

    logger.debug('Need to project coordinates.')
    if not HAVE_PYPROJ:
        logger.error("Cannot import pyproj! Exiting.")
        raise ImportError("In order to perform coordinate transformations on "
           "the data you are using the 'pyproj' Python module is required but "
           "was not found. Please install the module and try again.")

    p_src=None
    if HAVE_GDAL and (wkt_string is not None) and len(wkt_string)>0:
        srs = osgeo.osr.SpatialReference()
        result=srs.ImportFromWkt(wkt_string)
        try:
            p_src = pyproj.Proj(srs.ExportToProj4())
        except RuntimeError as e:
            logger.warning('pyproj returned exception: %s [wkt=%s]'%(e,wkt_string))

    if p_src is None:
        if HAVE_GDAL:
            reason="no wkt string provided."
        else:
            reason="the gdal python module not available."
        logger.warning("Assuming lon/lat coordinates on Clarke 1866 ellipsoid since "+reason)
        p_src = pyproj.Proj('+proj=longlat +ellps=clrk66 +no_defs')

    # check for hemisphere
    if np.median(nplat) < 0.:
        south='+south '
    else:
        south=''
    p_dest = pyproj.Proj('+proj=utm +zone=%d %s+units=m +ellps=WGS84'%(zone,south))
    x,y=pyproj.transform(p_src, p_dest, lon, lat)
    return x,y,zone

class DataSource(object):
    """
    A class that provides survey data for the inversion process.
    This is an abstract base class that implements common functionality.
    Methods to be overwritten by subclasses are marked as such.
    This class assumes 2D data which is mapped to a slice of a 3D domain.
    For other setups override the methods as required.
    """

    GRAVITY, MAGNETIC, ACOUSTIC, MT = list(range(4))

    def __init__(self, reference_system=None, tags=[]):
        """
        Constructor. Sets some defaults and initializes logger.
        
        :param tags: a list of tags associated with the data set.
        :type tags: ``list`` of almost any type (typically `str`) 
        :param reference_system: the reference coordinate system
        :type reference_system: ``None`` or `ReferenceSystem`
        """
        if not isinstance(tags ,list):
            raise ValueError("tags argument must be a list.")
        self.__tags=tags
        self.logger = logging.getLogger('inv.%s'%self.__class__.__name__)
        self.__subsampling_factor=1
        if not reference_system:
             self.__reference_system = CartesianReferenceSystem()
        else:
             self.__reference_system = reference_system

        if self.__reference_system.isCartesian():
            self.__v_scale=1.
        else:
            self.__v_scale=1./self.getReferenceSystem().getHeightUnit()

    def getTags(self):
        """
        returns the list of tags
        
        :rtype: ``list``
        """
        return self.__tags

    def hasTag(self, tag):
        """
        returns true if the data set has tag ``tag``
        
        :rtype: ``bool``
        """
        return tag in self.__tags
                    
             
    def getReferenceSystem(self):
        """
        returns the reference coordinate system
        
        :rtype: `ReferenceSystem`
        """
        return self.__reference_system

    def getHeightScale(self):
        """
        returns the height scale factor to convert from meters to the
        appropriate units of the reference system used.

        :rtype: ``float``
        """
        return self.__v_scale

    def getDataExtents(self):
        """
        returns a tuple of tuples ``( (x0, y0), (nx, ny), (dx, dy) )``, where

        - ``x0``, ``y0`` = coordinates of data origin
        - ``nx``, ``ny`` = number of data points in x and y
        - ``dx``, ``dy`` = spacing of data points in x and y

        This method must be implemented in subclasses.
        """
        raise NotImplementedError

    def getDataType(self):
        """
        Returns the type of survey data managed by this source.
        Subclasses must return `GRAVITY` or `MAGNETIC` or `ACOUSTIC` as appropriate.
        """
        raise NotImplementedError

    def getSurveyData(self, domain, origin, NE, spacing):
        """
        This method is called by the `DomainBuilder` to retrieve the survey
        data as `Data` objects on the given domain.

        Subclasses should return one or more `Data` objects with survey data
        interpolated on the given `escript` domain. The exact return type
        depends on the type of data.

        :param domain: the escript domain to use
        :type domain: `esys.escript.Domain`
        :param origin: the origin coordinates of the domain
        :type origin: ``tuple`` or ``list``
        :param NE: the number of domain elements in each dimension
        :type NE: ``tuple`` or ``list``
        :param spacing: the cell sizes (node spacing) in the domain
        :type spacing: ``tuple`` or ``list``
        """
        raise NotImplementedError

    def getUtmZone(self):
        """
        All data source coordinates are converted to UTM (Universal Transverse
        Mercator) in order to have useful domain extents. Subclasses should
        implement this method and return the UTM zone number of the projected
        coordinates.
        """
        raise NotImplementedError

    def setSubsamplingFactor(self, f):
        """
        Sets the data subsampling factor (default=1).

        The factor is applied in all dimensions. For example a 2D dataset
        with 300 x 150 data points will be reduced to 150 x 75 when a
        subsampling factor of 2 is used.
        This becomes important when adding data of varying resolution to
        a `DomainBuilder`.
        """
        self.__subsampling_factor=f

    def getSubsamplingFactor(self):
        """
        Returns the subsampling factor that was set via `setSubsamplingFactor`
        (see there).
        """
        return self.__subsampling_factor


##############################################################################
class ErMapperData(DataSource):
    """
    Data Source for ER Mapper raster data.
    Note that this class only accepts a very specific type of ER Mapper data
    input and will raise an exception if other data is found.
    """
    def __init__(self, data_type, headerfile, datafile=None, altitude=0.,
                 error=None, scale_factor=None, null_value=None,
                 reference_system=None):
        """
        :param data_type: type of data, must be `GRAVITY` or `MAGNETIC`
        :type data_type: ``int``
        :param headerfile: ER Mapper header file (usually ends in .ers)
        :type headerfile: ``str``
        :param datafile: ER Mapper binary data file name. If not supplied the
                         name of the header file without '.ers' is assumed
        :type datafile: ``str``
        :param altitude: altitude of measurements above ground in meters
        :type altitude: ``float``
        :param error: constant value to use for the data uncertainties.
                      If a value is supplied, it is scaled by the same factor
                      as the measurements. If not provided the error is
                      assumed to be 2 units for all measurements (i.e. 0.2
                      mGal and 2 nT for gravity and magnetic, respectively)
        :type error: ``float``
        :param scale_factor: the measurements and error values are scaled by
                             this factor. By default, gravity data is assumed
                             to be given in 1e-6 m/s^2 (0.1 mGal), while
                             magnetic data is assumed to be in 1e-9 T (1 nT).
        :type scale_factor: ``float``
        :param null_value: value that is used in the file to mark undefined
                           areas. This information is usually included in the
                           file.
        :type null_value: ``float``
        :param reference_system: reference coordinate system to be used.
                                 For a Cartesian reference (default) the
                                 appropriate UTM transformation is applied.
        :type reference_system: `ReferenceSystem`
        :note: consistence in the reference coordinate system and the reference
               coordinate system used in the data source is not checked.
        """
        super(ErMapperData, self).__init__(reference_system, [ headerfile ] )
        self.__headerfile=headerfile
        if datafile is None:
            self.__datafile=headerfile[:-4]
        else:
            self.__datafile=datafile
        self.__altitude=altitude
        self.__data_type=data_type
        self.__utm_zone = None
        self.__scale_factor = scale_factor
        self.__null_value = null_value
        self.__error_value = error
        self.__readHeader()

    def __readHeader(self):
        self.logger.debug("Checking Data Source: %s (header: %s)"%(self.__datafile, self.__headerfile))
        metadata=open(self.__headerfile, 'r').readlines()
        start=-1
        for i in range(len(metadata)):
            if metadata[i].strip() == 'DatasetHeader Begin':
                start=i+1
        if start==-1:
            raise RuntimeError('Invalid ER Mapper header file ("DatasetHeader" not found)')

        # parse header file filling dictionary of found values
        md_dict={}
        section=[]
        for i in range(start, len(metadata)):
            line=metadata[i].strip()
            if line[-6:].strip() == 'Begin':
                section.append(line[:-6].strip())
            elif line[-4:].strip() == 'End':
                if len(section)>0:
                    section.pop()
            else:
                vals=line.split('=')
                if len(vals)==2:
                    key = vals[0].strip()
                    value = vals[1].strip()
                    fullkey='.'.join(section+[key])
                    md_dict[fullkey]=value

        # check that the data format/type is supported
        try:
            if md_dict['ByteOrder'] != 'LSBFirst':
                raise RuntimeError('Unsupported byte order '+md_dict['ByteOrder'])
        except KeyError:
            self.logger.warning("Byte order not specified. Assuming LSB first.")

        try:
            if md_dict['DataType'] != 'Raster':
                raise RuntimeError('Unsupported data type '+md_dict['DataType'])
        except KeyError:
            self.logger.warning("Data type not specified. Assuming raster data.")

        try:
            if md_dict['RasterInfo.CellType'] == 'IEEE4ByteReal':
                self.__celltype = DATATYPE_FLOAT32
            elif md_dict['RasterInfo.CellType'] == 'IEEE8ByteReal':
                self.__celltype = DATATYPE_FLOAT64
            elif md_dict['RasterInfo.CellType'] == 'Signed32BitInteger':
                self.__celltype = DATATYPE_INT32
            else:
                raise RuntimeError('Unsupported data type '+md_dict['RasterInfo.CellType'])
        except KeyError:
            self.logger.warning("Cell type not specified. Assuming IEEE4ByteReal.")
            self.__celltype = DATATYPE_FLOAT32

        try:
            fileOffset = int(md_dict['HeaderOffset'])
        except:
            fileOffset = 0
        if fileOffset > 0:
            raise RuntimeError("ER Mapper data with header offset >0 not supported.")

        # now extract required information
        try:
            NX = int(md_dict['RasterInfo.NrOfCellsPerLine'])
            NY = int(md_dict['RasterInfo.NrOfLines'])
        except:
            raise RuntimeError("Could not determine extents of data")

        ### mask/null value
        # note that NaN is always filtered out in ripley
        if self.__null_value is None:
            try:
                self.__null_value = float(md_dict['RasterInfo.NullCellValue'])
            except:
                self.logger.debug("Could not determine null value, using default.")
                self.__null_value = 99999
        elif not isinstance(self.__null_value,float) and not isinstance(self.__null_value,int):
            raise TypeError("Invalid type of null_value parameter")

        try:
            spacingX = float(md_dict['RasterInfo.CellInfo.Xdimension'])
            spacingY = float(md_dict['RasterInfo.CellInfo.Ydimension'])
        except:
            raise RuntimeError("Could not determine cell dimensions")

        try:
            if md_dict['CoordinateSpace.CoordinateType']=='EN':
                originX = float(md_dict['RasterInfo.RegistrationCoord.Eastings'])
                originY = float(md_dict['RasterInfo.RegistrationCoord.Northings'])
            elif md_dict['CoordinateSpace.CoordinateType']=='LL':
                originX = float(md_dict['RasterInfo.RegistrationCoord.Longitude'])
                originY = float(md_dict['RasterInfo.RegistrationCoord.Latitude'])
            else:
                raise RuntimeError("Unknown CoordinateType")
        except:
            self.logger.warning("Could not determine coordinate origin. Setting to (0.0, 0.0)")
            originX,originY = 0.0, 0.0

        # data sets have origin in top-left corner so y runs top-down and
        # we need to flip accordingly
        originY-=NY*spacingY

        if 'GEODETIC' in md_dict['CoordinateSpace.Projection']:
            # it appears we have lat/lon coordinates so need to convert
            # origin and spacing. Try using gdal to get the wkt if available:
            try:
                from osgeo import gdal
                ds=gdal.Open(self.__headerfile)
                wkt=str(ds.GetProjection())
            except:
                wkt='GEOGCS["GEOCENTRIC DATUM of AUSTRALIA",DATUM["GDA94",SPHEROID["GRS80",6378137,298.257222101]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]]'
                self.logger.warning('GDAL not available or file read error, assuming GDA94 data')
            if self.getReferenceSystem().isCartesian():
                originX_UTM,originY_UTM,zone = LatLonToUTM(originX, originY, wkt)
                op1X,op1Y,_ = LatLonToUTM(originX+spacingX, originY+spacingY, wkt)
                # we are rounding to avoid interpolation issues
                spacingX = np.round(op1X-originX_UTM)
                spacingY = np.round(op1Y-originY_UTM)
                originX = np.round(originX_UTM)
                originY = np.round(originY_UTM)
                self.__utm_zone = zone
            else:
                op1X, op1Y = originX+spacingX, originY+spacingY
                spacingX = np.round(op1X-originX,5)
                spacingY = np.round(op1Y-originY,5)
                originX = np.round(originX,5)
                originY = np.round(originY,5)

        self.__dataorigin=[originX, originY]
        self.__delta = [spacingX, spacingY]
        self.__nPts = [NX, NY]
        self.__origin = [originX, originY]
        ### scale factor
        if self.__scale_factor is None:
            if self.__data_type == self.GRAVITY:
                self.logger.info("Assuming gravity data scale is 1e-6 m/s^2.")
                self.__scale_factor = 1e-6
            else:
                self.logger.info("Assuming magnetic data units are 'nT'.")
                self.__scale_factor = 1e-9

        ### error value
        if self.__error_value is None:
            self.__error_value = 2.
        elif not isinstance(self.__error_value,float) and not isinstance(self.__error_value,int):
            raise TypeError("Invalid type of error parameter")


    def getDataExtents(self):
        """
        returns ( (x0, y0), (nx, ny), (dx, dy) )
        """
        return (list(self.__origin), list(self.__nPts), list(self.__delta))

    def getDataType(self):
        return self.__data_type

    def getSurveyData(self, domain, origin, NE, spacing):
        FS = ReducedFunction(domain)
        nValues=self.__nPts
        # determine base location of this dataset within the domain
        first=[int((self.__origin[i]-origin[i])/spacing[i]) for i in range(len(self.__nPts))]
        # determine the resolution difference between domain and data.
        # If domain has twice the resolution we can double up the data etc.
        multiplier=[int(round(self.__delta[i]/spacing[i])) for i in range(len(self.__nPts))]
        if domain.getDim()==3:
            first.append(int((self.getHeightScale()*self.__altitude-origin[2])/spacing[2]))
            multiplier=multiplier+[1]
            nValues=nValues+[1]

        reverse = [0]*domain.getDim()
        byteorder=BYTEORDER_NATIVE
        self.logger.debug("calling readBinaryGrid with first=%s, nValues=%s, multiplier=%s, reverse=%s"%(str(first),str(nValues),str(multiplier),str(reverse)))
        data = readBinaryGrid(self.__datafile, FS, shape=(),
                fill=self.__null_value, byteOrder=byteorder,
                dataType=self.__celltype, first=first, numValues=nValues,
                multiplier=multiplier, reverse=reverse)
        sigma = self.__error_value * whereNonZero(data-self.__null_value)

        data = data * self.__scale_factor
        sigma = sigma * self.__scale_factor
        return data, sigma

    def getUtmZone(self):
        return self.__utm_zone


##############################################################################
class NetCdfData(DataSource):
    """
    Data Source for gridded netCDF data that use CF/COARDS conventions.
    """
    def __init__(self, data_type, filename, altitude=0., data_variable=None,
                       error=None, scale_factor=None, null_value=None, reference_system=None):
        """
        :param filename: file name for survey data in netCDF format
        :type filename: ``str``
        :param data_type: type of data, must be `GRAVITY` or `MAGNETIC`
        :type data_type: ``int``
        :param altitude: altitude of measurements in meters
        :type altitude: ``float``
        :param data_variable: name of the netCDF variable that holds the data.
                              If not provided an attempt is made to determine
                              the variable and an exception thrown on failure.
        :type data_variable: ``str``
        :param error: either the name of the netCDF variable that holds the
                      uncertainties of the measurements or a constant value
                      to use for the uncertainties. If a constant value is
                      supplied, it is scaled by the same factor as the
                      measurements. If not provided the error is assumed to
                      be 2 units for all measurements (i.e. 0.2 mGal and 2 nT
                      for gravity and magnetic, respectively)
        :type error: ``str`` or ``float``
        :param scale_factor: the measurements and error values are scaled by
                             this factor. By default, gravity data is assumed
                             to be given in 1e-6 m/s^2 (0.1 mGal), while
                             magnetic data is assumed to be in 1e-9 T (1 nT).
        :type scale_factor: ``float``
        :param null_value: value that is used in the file to mark undefined
                           areas. This information is usually included in the
                           file.
        :type null_value: ``float``
        :param reference_system: reference coordinate system to be used.
                                 For a Cartesian reference (default) the
                                 appropriate UTM transformation is applied.
        :type reference_system: `ReferenceSystem`
        :note: it is the responsibility of the caller to ensure all data
               sources and the domain builder use the same reference system.
        """
        super(NetCdfData,self).__init__(reference_system, [filename])
        self.__filename=filename
        if not data_type in [self.GRAVITY,self.MAGNETIC]:
            raise ValueError("Invalid value for data_type parameter")
        self.__data_type = data_type
        self.__altitude = altitude
        self.__data_name = data_variable
        self.__scale_factor = scale_factor
        self.__null_value = null_value
        self.__utm_zone = None
        self.__readMetadata(error)

    def __readMetadata(self, error):
        self.logger.debug("Checking Data Source: %s"%self.__filename)
        f=netcdf_file(self.__filename, 'r')

        ### longitude- / X-dimension and variable
        NX=0
        for n in ['lon','longitude','x']:
            if n in f.dimensions:
                NX=f.dimensions[n]
                lon_name=n
                break
        if NX==0:
            raise RuntimeError("Could not determine extents of data")

        # CF/COARDS states that coordinate variables have the same name as
        # the dimensions
        if not lon_name in f.variables:
            raise RuntimeError("Could not determine longitude variable")
        longitude=f.variables.pop(lon_name)

        ### latitude- / Y-dimension and variable
        NY=0
        for n in ['lat','latitude','y']:
            if n in f.dimensions:
                NY=f.dimensions[n]
                lat_name=n
                break
        if NY==0:
            raise RuntimeError("Could not determine extents of data")
        if not lat_name in f.variables:
            raise RuntimeError("Could not determine latitude variable")
        latitude=f.variables.pop(lat_name)

        ### data variable
        if self.__data_name is not None:
            try:
                dims = f.variables[self.__data_name].dimensions
                if not ((lat_name in dims) and (lon_name in dims)):
                    raise ValueError("Invalid data variable name supplied")
            except KeyError:
                raise ValueError("Invalid data variable name supplied")
        else:
            for n in sorted(f.variables.keys()):
                dims=f.variables[n].dimensions
                if (lat_name in dims) and (lon_name in dims):
                    self.__data_name=n
                    break
        if self.__data_name is None:
            raise RuntimeError("Could not determine data variable")

        datavar = f.variables[self.__data_name]

        ### error value/variable
        self.__error_name = None
        if isinstance(error,str):
            try:
                dims = f.variables[error].dimensions
                if not ((lat_name in dims) and (lon_name in dims)):
                    raise ValueError("Invalid error variable name supplied")
            except KeyError:
                raise ValueError("Invalid error variable name supplied")
            self.__error_name = error
        elif isinstance(error,float) or isinstance(error,int):
            self.__error_value = float(error)
        elif error is None:
            self.__error_value = 2.
        else:
            raise TypeError("Invalid type of error parameter")

        ### mask/null value
        # note that NaN is always filtered out in ripley
        if self.__null_value is None:
            if hasattr(datavar, 'missing_value'):
                self.__null_value = float(datavar.missing_value)
            elif hasattr(datavar, '_FillValue'):
                self.__null_value = float(datavar._FillValue)
            else:
                self.logger.debug("Could not determine null value, using default.")
                self.__null_value = 99999
        elif not isinstance(self.__null_value,float) and not isinstance(self.__null_value,int):
            raise TypeError("Invalid type of null_value parameter")

        # try to determine units of data - this is disabled until we obtain a
        # file with valid information
        #if hasattr(f.variables[data_name], 'units'):
        #   units=f.variables[data_name].units

        ### scale factor
        if self.__scale_factor is None:
            if self.__data_type == self.GRAVITY:
                self.logger.info("Assuming gravity data scale is 1e-6 m/s^2.")
                self.__scale_factor = 1e-6
            else:
                self.logger.info("Assuming magnetic data units are 'nT'.")
                self.__scale_factor = 1e-9

        # see if there is a WKT string to convert coordinates
        try:
            wkt_string=str(datavar.esri_pe_string)
            self.logger.debug("wkt_string is: %s"%wkt_string)
        except:
            wkt_string=None

        # CF GDAL output: see if there is a grid_mapping attribute which
        # contains the name of a dummy variable that holds information about
        # mapping. GDAL puts the WKT string into spatial_ref:
        if wkt_string is None:
            try:
                mapvar=f.variables[datavar.grid_mapping]
                wkt_string=str(mapvar.spatial_ref)
                self.logger.debug("wkt_string is: %s"%wkt_string)
            except:
                self.logger.debug("no wkt_string found!")

        # actual_range & geospatial_lon_min/max do not always contain correct
        # values so we have to obtain the min/max in a less efficient way:
        lon_range=longitude.data.min(),longitude.data.max()
        lat_range=latitude.data.min(),latitude.data.max()
        if self.getReferenceSystem().isCartesian():
            lon_range,lat_range,zone=LatLonToUTM(lon_range, lat_range, wkt_string)
            self.__utm_zone = zone
             
        lengths=[lon_range[1]-lon_range[0], lat_range[1]-lat_range[0]]

        # see if lat or lon is stored in reverse order to domain conventions
        self.__reverse=[False,False]
        d=longitude.data
        if d[0]>d[-1]:
            self.__reverse[0]=True
        d=latitude.data
        if d[0]>d[-1]:
            self.__reverse[1]=True
        self.__nPts=[NX, NY]
        self.__origin=[lon_range[0],lat_range[0]]
        # we are rounding to avoid interpolation issues
        if self.getReferenceSystem().isCartesian():
            # rounding will give us about meter-accuracy with UTM coordinates
            r=0
        else:
            # this should give us about meter-accuracy with lat/lon coords
            r=5
        self.__delta=[np.round(lengths[i]/self.__nPts[i],r) for i in range(2)]
        del longitude, latitude, d, datavar
        f.close()

    def getDataExtents(self):
        """
        returns ( (x0, y0), (nx, ny), (dx, dy) )
        """
        return (list(self.__origin), list(self.__nPts), list(self.__delta))

    def getDataType(self):
        return self.__data_type

    def getSurveyData(self, domain, origin, NE, spacing):
        if not HAS_RIPLEY:
            raise RuntimeError("Ripley module not available for reading")
        FS=ReducedFunction(domain)
        nValues=self.__nPts
        # determine base location of this dataset within the domain
        first=[int((self.__origin[i]-origin[i])/spacing[i]) for i in range(len(self.__nPts))]
        # determine the resolution difference between domain and data.
        # If domain has twice the resolution we can double up the data etc.
        multiplier=[int(round(self.__delta[i]/spacing[i])) for i in range(len(self.__nPts))]
        reverse = [int(self.__reverse[i]) for i in range(len(self.__reverse))]

        if domain.getDim() == 3:
            first.append(int((self.getHeightScale()*self.__altitude-origin[2])/spacing[2]))
            multiplier = multiplier + [1]
            nValues = nValues + [1]
            reverse = reverse + [0]

        self.logger.debug("calling readNcGrid with dataname=%s, first=%s, nValues=%s, multiplier=%s, reverse=%s"%(
            self.__data_name, str(first),str(nValues),str(multiplier),str(reverse)))
        data = ripleycpp._readNcGrid(self.__filename, self.__data_name, FS,
                shape=(), fill=self.__null_value, first=first,
                numValues=nValues, multiplier=multiplier, reverse=reverse)

        if self.__error_name is not None:
            self.logger.debug("calling readNcGrid with dataname=%s, first=%s, nValues=%s, multiplier=%s, reverse=%s"%(
                self.__data_name, str(first),str(nValues),str(multiplier),str(reverse)))
            sigma = ripleycpp._readNcGrid(self.__filename, self.__error_name,
                    FS, shape=(), fill=0., first=first, numValues=nValues,
                    multiplier=multiplier, reverse=reverse)
        else:
            # arithmetics with NaN produces undesired results so we replace
            # NaNs by a large positive number which (hopefully) is not present
            # in the real dataset
            if np.isnan(self.__null_value):
                data.replaceNaN(1.e300)
                self.__null_value = 1.e300
            sigma = self.__error_value * whereNonZero(data-self.__null_value)

        data = data * self.__scale_factor
        sigma = sigma * self.__scale_factor
        return data, sigma

    def getUtmZone(self):
        return self.__utm_zone


##############################################################################
class SourceFeature(object):
    """
    A feature adds a density/susceptibility distribution to (parts of) a
    domain of a synthetic data source, for example a layer of a specific
    rock type or a simulated ore body.
    """
    def getValue(self):
        """
        Returns the value for the area covered by mask. It can be constant
        or a `Data` object with spatial dependency.
        """
        raise NotImplementedError

    def getMask(self, x):
        """
        Returns the mask of the area of interest for this feature. That is,
        mask is non-zero where the value returned by `getValue()` should be
        applied, zero elsewhere.
        """
        raise NotImplementedError

class SmoothAnomaly(SourceFeature):
    """
    A source feature in the form of a blob (roughly gaussian).
    """
    def __init__(self, lx, ly, lz, x, y, depth, v_inner=None, v_outer=None):
        """
        Intializes the smooth anomaly data.

        :param lx: size of blob in x-dimension
        :param ly: size of blob in y-dimension
        :param lz: size of blob in z-dimension
        :param x: location of blob in x-dimension
        :param y: location of blob in y-dimension
        :param depth: depth of blob
        :param v_inner: value in the centre of the blob
        :param v_outer: value in the periphery of the blob
        """
        self.x=x
        self.y=y
        self.lx=lx
        self.ly=ly
        self.lz=lz
        self.depth=depth
        self.v_inner=v_inner
        self.v_outer=v_outer
        self.value=None
        self.mask=None

    def getValue(self,x):
        if self.value is None:
            if self.v_outer is None or self.v_inner is None:
                self.value=0
            else:
                DIM=x.getDomain().getDim()
                alpha=-log(abs(self.v_outer/self.v_inner))*4
                value=exp(-alpha*((x[0]-self.x)/self.lx)**2)
                value=value*exp(-alpha*((x[DIM-1]+self.depth)/self.lz)**2)
                self.value=maximum(abs(self.v_outer), abs(self.v_inner*value))
                if self.v_inner<0: self.value=-self.value

        return self.value

    def getMask(self, x):
        DIM=x.getDomain().getDim()
        m=whereNonNegative(x[DIM-1]+self.depth+self.lz/2) * whereNonPositive(x[DIM-1]+self.depth-self.lz/2) \
            *whereNonNegative(x[0]-(self.x-self.lx/2)) * whereNonPositive(x[0]-(self.x+self.lx/2))
        if DIM>2:
            m*=whereNonNegative(x[1]-(self.y-self.ly/2)) * whereNonPositive(x[1]-(self.y+self.ly/2))
        self.mask = m
        return m

##############################################################################
class SyntheticDataBase(DataSource):
    """
    Base class to define reference data based on a given property distribution
    (density or susceptibility). Data are collected from a square region of
    vertical extent ``length`` on a grid with ``number_of_elements`` cells in
    each direction.

    The synthetic data are constructed by solving the appropriate forward
    problem. Data can be sampled with an offset from the surface at z=0 or
    using the entire subsurface region.
    """
    def __init__(self, data_type,
                 DIM=2,
                 number_of_elements=10,
                 length=1*U.km,
                 B_b=None,
                 data_offset=0,
                 full_knowledge=False):
        """
        :param data_type: data type indicator
        :type data_type: `DataSource.GRAVITY`, `DataSource.MAGNETIC`
        :param DIM: number of spatial dimensions
        :type DIM: ``int`` (2 or 3)
        :param number_of_elements: lateral number of elements in the region
                                   where data are collected
        :type number_of_elements: ``int``
        :param length: lateral extent of the region where data are collected
        :type length: ``float``
        :param B_b: background magnetic flux density [B_r, B_latiude, B_longitude]. Only used for magnetic data.
        :type B_b: ``list`` of ``Scalar``
        :param data_offset: offset of the data collection region from the surface
        :type data_offset: ``float``
        :param full_knowledge: if ``True`` data are collected from the entire
                               subsurface region. This is mainly for testing.
        :type full_knowledge: ``Bool``
        """
        super(SyntheticDataBase, self).__init__()
        if not data_type in [self.GRAVITY, self.MAGNETIC]:
            raise ValueError("Invalid value for data_type parameter")
        self.DIM=DIM
        self.number_of_elements=number_of_elements
        self.length=length
        self.__data_type = data_type
        self.__full_knowledge= full_knowledge
        self.__data_offset=data_offset
        self.__B_b =None
        # this is for Cartesian (FIXME ?)
        if data_type  ==  self.MAGNETIC:
            if self.DIM < 3:
                self.__B_b = np.array([B_b[0], B_b[2]])
            else:
                self.__B_b = ([B_b[0], B_b[1],B_b[2]])
        self.__origin = [0]*(DIM-1)
        self.__delta = [float(length)/number_of_elements]*(DIM-1)
        self.__nPts = [number_of_elements]*(DIM-1)
        self._reference_data=None

    def getUtmZone(self):
        """
        returns a dummy UTM zone since this class does not use real coordinate
        values.
        """
        return 0

    def getDataExtents(self):
        """
        returns the lateral data extend of the data set
        """
        return (list(self.__origin), list(self.__nPts), list(self.__delta))

    def getDataType(self):
        """
        returns the data type
        """
        return self.__data_type

    def getSurveyData(self, domain, origin, number_of_elements, spacing):
        """
        returns the survey data placed on a given domain.

        :param domain: domain on which the data are to be placed
        :type domain: ``Domain``
        :param origin: origin of the domain
        :type origin: ``list`` of ``float``
        :param number_of_elements: number of elements (or cells) in each
                                   spatial direction used to span the domain
        :type number_of_elements: ``list`` of ``int``
        :param spacing: cell size in each spatial direction
        :type spacing: ``list`` of ``float``
        :return: observed gravity field or magnetic flux density for each cell
                 in the domain and for each cell an indicator 1/0 if the data
                 are valid or not.
        :rtype: pair of ``Scalar``
        """
        pde=LinearSinglePDE(domain)
        DIM=domain.getDim()
        x=domain.getX()
        # set the reference data
        k=self.getReferenceProperty(domain)
        # calculate the corresponding potential
        z=x[DIM-1]
        m_psi_ref=whereZero(z-sup(z))
        if self.getDataType()==DataSource.GRAVITY:
            pde.setValue(A=kronecker(domain), Y=-4*np.pi*U.Gravitational_Constant*self._reference_data, q=m_psi_ref)
        else:
            pde.setValue(A=kronecker(domain), X=self._reference_data*self.__B_b, q=m_psi_ref)
        pde.setSymmetryOn()
        #pde.getSolverOptions().setTolerance(1e-13)
        psi_ref=pde.getSolution()
        del pde
        if self.getDataType()==DataSource.GRAVITY:
            data = -grad(psi_ref, ReducedFunction(domain))
        else:
            data = self._reference_data*self.__B_b-grad(psi_ref, ReducedFunction(domain))

        x=ReducedFunction(domain).getX()
        if self.__full_knowledge:
            sigma = whereNegative(x[DIM-1])
        else:
            sigma=1.
            # limit mask to non-padding in horizontal area
            for i in range(DIM-1):
                x_i=x[i]
                sigma=sigma * wherePositive(x_i) * whereNegative(x_i-(sup(x_i)+inf(x_i)))
            # limit mask to one cell thickness at z=0
            z=x[DIM-1]
            oo=int(self.__data_offset/spacing[DIM-1]+0.5)*spacing[DIM-1]
            sigma = sigma * whereNonNegative(z-oo) * whereNonPositive(z-oo-spacing[DIM-1])
        return data,sigma

    def getReferenceProperty(self, domain=None):
        """
        Returns the reference `Data` object that was used to generate
        the gravity/susceptibility anomaly data.

        :return: the density or susceptibility anomaly used to create the
                 survey data
        :note: it can be assumed that in the first call the ``domain``
               argument is present so the actual anomaly data can be created.
               In subsequent calls this may not be true.
        :note: method needs to be overwritten
        """
        raise NotImplementedError()

class SyntheticFeatureData(SyntheticDataBase):
    """
    Uses a list of `SourceFeature` objects to define synthetic anomaly data.
    """
    def __init__(self, data_type,
                       features,
                       DIM=2,
                       number_of_elements=10,
                       length=1*U.km,
                       B_b=None,
                       data_offset=0,
                       full_knowledge=False):
        """
        :param data_type: data type indicator
        :type data_type: `DataSource.GRAVITY`, `DataSource.MAGNETIC`
        :param features: list of features. It is recommended that the features
                         are located entirely below the surface.
        :type features: ``list`` of `SourceFeature`
        :param DIM: spatial dimensionality
        :type DIM: ``int`` (2 or 3)
        :param number_of_elements: lateral number of elements in the region
                                   where data are collected
        :type number_of_elements: ``int``
        :param length: lateral extent of the region where data are collected
        :type length: ``float``
        :param B_b: background magnetic flux density [B_r, B_latiude, B_longitude]. Only used for magnetic data.
        :type B_b: ``list`` of ``Scalar``
        :param data_offset: offset of the data collection region from the surface
        :type data_offset: ``float``
        :param full_knowledge: if ``True`` data are collected from the entire subsurface region. This is mainly for testing.
        :type full_knowledge: ``Bool``
        """
        super(SyntheticFeatureData,self).__init__(
                                 data_type=data_type, DIM=DIM,
                                 number_of_elements=number_of_elements,
                                 length=length, B_b=B_b,
                                 data_offset=data_offset,
                                 full_knowledge=full_knowledge)
        self._features = features


    def getReferenceProperty(self, domain=None):
        """
        Returns the reference `Data` object that was used to generate
        the gravity/susceptibility anomaly data.
        """
        if self._reference_data == None:
            DIM=domain.getDim()
            x=domain.getX()
            k=0.
            for f in self._features:
                m=f.getMask(x)
                k = k * (1-m) + f.getValue(x) * m
            self._reference_data= k
        return self._reference_data

class SyntheticData(SyntheticDataBase):
    """
    Defines synthetic gravity/magnetic data based on harmonic property anomaly

        rho = amplitude * sin(n_depth * pi /depth * (z+depth_offset)) * sin(n_length * pi /length * (x - shift) )

    for all x and z<=0. For z>0 rho = 0.
    """
    def __init__(self, data_type,
                       n_length=1,
                       n_depth=1,
                       depth_offset=0.,
                       depth=None,
                       amplitude=None,
                       DIM=2,
                       number_of_elements=10,
                       length=1*U.km,
                       B_b=None,
                       data_offset=0,
                       full_knowledge=False,
                       s=0.):
        """
        :param data_type: data type indicator
        :type data_type: `DataSource.GRAVITY`, `DataSource.MAGNETIC`
        :param n_length: number of oscillations in the anomaly data within the
                         observation region
        :type n_length: ``int``
        :param n_depth: number of oscillations in the anomaly data below surface
        :type n_depth: ``int``
        :param depth_offset: vertical offset of the data
        :type depth_offset: ``float``
        :param depth: vertical extent in the anomaly data. If not present the
                      depth of the domain is used.
        :type depth: ``float``
        :param amplitude: data amplitude. Default value is 200 U.kg/U.m**3 for
                          gravity and 0.1 for magnetic data.
        :param DIM: spatial dimensionality
        :type DIM: ``int`` (2 or 3)
        :param number_of_elements: lateral number of elements in the region
                                   where data are collected
        :type number_of_elements: ``int``
        :param length: lateral extent of the region where data are collected
        :type length: ``float``
        :param B_b: background magnetic flux density [B_r, B_latiude, B_longitude].
                    Only used for magnetic data.
        :type B_b: ``list`` of ``Scalar``
        :param data_offset: offset of the data collection region from the surface
        :type data_offset: ``float``
        :param full_knowledge: if ``True`` data are collected from the entire
                               subsurface region. This is mainly for testing.
        :type full_knowledge: ``Bool``
        """
        super(SyntheticData,self).__init__(
                                 data_type=data_type, DIM=DIM,
                                 number_of_elements=number_of_elements,
                                 length=length, B_b=B_b,
                                 data_offset=data_offset,
                                 full_knowledge=full_knowledge)
        self.__n_length = n_length
        self.__n_depth = n_depth
        self.depth = depth
        self.depth_offset=depth_offset
        if amplitude == None:
            if data_type == DataSource.GRAVITY:
                amplitude = 200 *U.kg/U.m**3
            else:
                amplitude = 0.1
        self.__amplitude = amplitude
        self.__s=s

    def getReferenceProperty(self, domain=None):
        """
        Returns the reference `Data` object that was used to generate
        the gravity/susceptibility anomaly data.
        """
        if self._reference_data is None:
            DIM=domain.getDim()
            x=domain.getX()
            # set the reference data
            z=x[DIM-1]
            dd=self.depth
            if dd is None: dd=inf(z)
            z2=(z+self.depth_offset)/(self.depth_offset-dd)
            k=sin(self.__n_depth * np.pi  * z2) * whereNonNegative(z2) * whereNonPositive(z2-1.) * self.__amplitude
            for i in range(DIM-1):
               x_i=x[i]
               min_x=inf(x_i)
               max_x=sup(x_i)
               k*= sin(self.__n_length*np.pi*(x_i-min_x-self.__s)/(max_x-min_x))
            self._reference_data= k
        return self._reference_data

##############################################################################
class NumpyData(DataSource):
    """
    """

    def __init__(self, data_type, data, error=1., length=1.*U.km, null_value=-1., tags=[], origin=None):
        """
        A data source that uses survey data from a ``numpy`` object or list
        instead of a file.
        The dimensionality is inferred from the shape of ``data`` (1- and
        2-dimensional data is supported). The data origin is assumed to be
        at the coordinate origin.

        :param data_type: data type indicator
        :type data_type: `DataSource.GRAVITY`, `DataSource.MAGNETIC`
        :param data: the survey data array. Note that for a cartesian coordinate
                     system the shape of the data is considered to be
                     (nz,ny,nx).
        :type data: ``numpy.array`` or ``list``
        :param error: constant value to use for the data uncertainties or a
                      numpy object with uncertainties for every data point.
        :type error: ``float`` or ``list`` or ``ndarray``
        :param length: side length(s) of the data slice/volume. This can be
                       a scalar to indicate constant length in all dimensions
                       or an array/list of values in each coordinate dimension.
        :type length: ``float`` or ``list`` or ``ndarray``
        :param null_value: value that is used in the undefined regions of the
                           survey data object.
        :type null_value: ``float``
        :param tags: a list of tags associated with the data set.
        :type tags: ``list`` of almost any type (typically `str`) 
        :param origin: offset of origin of offset
        :type origin: ``list`` of ``float``s
        """
        super(NumpyData, self).__init__(tags=tags)
        if not data_type in [self.GRAVITY, self.MAGNETIC, self.ACOUSTIC, self.MT ]:
            raise ValueError("Invalid value for data_type parameter")
        self.__data_type = data_type
        if not isinstance(data, np.ndarray) or data.dtype not in [ np.float64, np.complex128]:
            self.__data = np.asarray(data, dtype=np.float64)
        else:
            self.__data = data
        DIM = len(self.__data.shape)
        if DIM not in (1,2):
            raise ValueError("NumpyData requires 1- or 2-dimensional data")
        self.__error = np.asarray(error, dtype=np.float64)
        if len(self.__error.shape) > 0 and \
                self.__error.shape != self.__data.shape:
            raise ValueError("error argument must be scalar or match the shape of the data")
        if isinstance(length,float) or isinstance(length,int):
            length = [float(length)] * DIM
        else:
            length=np.asarray(length, dtype=float)
            if len(length.shape) != 1 or length.shape[0] != DIM:
                raise ValueError("length must be scalar or an array with %d values"%DIM)
            length=length.tolist()

        self.__length=length
        self.__null_value = null_value
        self.__nPts = list(reversed(self.__data.shape))
        self.__delta = [length[i]/self.__nPts[i] for i in range(DIM)]
        if origin is None:
            self.__origin = [0.] * DIM 
        else:
            self.__origin = origin[:DIM-1]
            
    def getDataExtents(self):
        return (self.__origin, self.__nPts, self.__delta)

    def getDataType(self):
        return self.__data_type

    def getSurveyData(self, domain, origin, NE, spacing):
        DIM=domain.getDim()
        if self.getDataType()  == self.ACOUSTIC:
            x=FunctionOnBoundary(domain).getX()
            BBX=boundingBox(domain)
            z=x[DIM-1] 
            mask= whereZero( z - inf(z))  # we don't use BBX[DIM-1][1] due to mountains'
            for i in range(DIM-1):
                x_i=x[i]
                mask+=whereNonPositive( x_i - self.__origin[i] ) + whereNonNegative( x_i - ( self.__origin[i]+self.__length[i] ) ) 
            mask=1-wherePositive(mask)
            
            data=Data(0.,(2,), FunctionOnBoundary(domain))
            step= [ self.__length[i]/self.__data.shape[i] for i in range(DIM-1) ]
            if DIM == 2:
                data[0] = interpolateTable(self.__data.real, x[0],self.__origin[0], step[0])
                data[1] = interpolateTable(self.__data.imag, x[0],self.__origin[0], step[0])
                if len(self.__error.shape) > 0:
                    sigma = interpolateTable(self.__error, x[0],  self.__origin[0], step[0])
                else:
                    sigma = Scalar(self.__error.item(), FunctionOnBoundary(domain))
            else:
                raise ValueError("3D domains are not supported yet.")
            data*=mask
            sigma*=mask
        elif self.getDataType()  == self.MT:
            if DIM == 2:
                step= [ self.__length[i]/self.__data.shape[i] for i in range(DIM-1) ]
                if len(self.__error.shape) > 0:
                    sigma = interpolateTable(self.__error, x[0],  self.__origin[0], step[0])
                else:
                    sigma = Scalar(self.__error.item(), FunctionOnBoundary(domain))
                return self.__data, sigma
            else:
                raise ValueError("3D domains are not supported yet.")

        else:
            FS = ReducedFunction(domain)
            nValues = self.__nPts
            dataDIM = len(nValues)
            # determine base location of this dataset within the domain
            first=[int((self.__origin[i]-origin[i])/spacing[i]) for i in range(dataDIM)]
            # determine the resolution difference between domain and data.
            # If domain has twice the resolution we can double up the data etc.
            multiplier=[int(round(self.__delta[i]/spacing[i])) for i in range(dataDIM)]
            if domain.getDim() > dataDIM:
                first.append(int(-origin[-1]/spacing[-1]))
                multiplier=multiplier+[1]
                nValues=nValues+[1]

            _handle, numpyfile = tempfile.mkstemp()
            os.close(_handle)
            self.__data.tofile(numpyfile)

            reverse=[0]*DIM
            byteorder=BYTEORDER_NATIVE
            datatype=DATATYPE_FLOAT64
            self.logger.debug("calling readBinaryGrid with first=%s, nValues=%s, multiplier=%s"%(str(first),str(nValues),str(multiplier)))
            data = readBinaryGrid(numpyfile, FS, shape=(),
                fill=self.__null_value, byteOrder=byteorder, dataType=datatype,
                first=first, numValues=nValues, multiplier=multiplier,
                reverse=reverse)
            if len(self.__error.shape) > 0:
                self.__error.tofile(numpyfile)
                self.logger.debug("calling readBinaryGrid with first=%s, nValues=%s, multiplier=%s"%(str(first),str(nValues),str(multiplier)))
                sigma = readBinaryGrid(numpyfile, FS, shape=(),
                    fill=0., byteOrder=byteorder, dataType=datatype,
                    first=first, numValues=nValues, multiplier=multiplier,
                    reverse=reverse)
            else:
                sigma = self.__error.item() * whereNonZero(data-self.__null_value)
            os.unlink(numpyfile)

        return data, sigma

    def getUtmZone(self):
        """
        returns a dummy UTM zone since this class does not use real coordinate
        values.
        """
        return 0

class MT2DTe(object):
    """
    class used to store frequency information accosicated with mt data
    """

    def __init__(self,x, omega=0):
        """
        initiale the MT2DTe tag object

        :param omega: frequency of readings
        :type omega: ``float``
        :param x: coordinates of measurements 
        :type x: ``list`` of ``tuple`` with ``float``
        """
        self.__omega=omega
        self.__x=x

    def getFrequency(self):
        """
        return frequency of measurement
        :rtype: ``float``
        """
        return self.__omega
    
    def getX(self):
        """
        return coordinates of measurement
        :rtype: ``float``
        """
        return self.__x

class SeismicSource(object):
    """
    describes a seimic source by location (x,y), frequency omega, power (if known) and orientation (if known).
    this class is used to tag seismic data sources.
    """ 
    def __init__(self, x, y=0., omega=0., elevation=0.,  power = None, orientation=None):
        """
        initiale the source
        
        :param x: lateral x location
        :param y: lateral y location
        :param omega: frequency of source
        :param elevation: elevation of source above reference level 
        :param power: power of source at frequence
        :param orientation: oriententation of source in 3D or 2D (or None)
        :type x: ``float``
        :type y: ``float``
        :type omega: ``float``
        :type power: ``complex`` or ``None``
        :type orientation: vector of appropriate length or ``None``
        """
        self.__loc=(x,y)
        self.__omega=omega
        self.__power=power
        self.__elevation=elevation
        self.__orientation=orientation
        
    def __eq__(self, other):
        if isinstance(other, SeismicSource):
            return self.__loc == other.getLocation() \
                and self.__omega == other.getFrequency() \
                and self.__elevation == other.getElevation() \
                and self.__power == other.getPower() \
                and self.__orientation == other.getOrientation()
        else:
            return False
    
    def __ne__(self, other):
            return not self.__eq__(other)
            
    def getLocation(self):
        """
        return location of source
        :rtype: ``tuple`` of ``float``
        """
        return self.__loc
    def getFrequency(self):
        """
        return frequency of source
        :rtype: ``float``
        """
        return self.__omega
        
    def getElevation(self):
        """
        return elevation of source
        :rtype: ``float``
        """
        return self.__elevation
        
    def getPower(self):
        """
        return power of source at frequency
        :rtype: ``complex`` or ``None``
        """
        return self.__power
    def getOrientation(self):
        """
        return power of source orientation at frequency
        :rtype: vector type object or ``None``
        """
        return self.__orientation