/usr/lib/python3-escript/esys/downunder/magtel2d.py is in python3-escript 5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 | # -*- coding: utf-8 -*-
##############################################################################
#
# Copyright (c) 2015 by University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2015 by University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
"""
2D Magnetotelluric modelling for TE and TM mode.
:var __author__: name of author
:var __copyright__: copyrights
:var __license__: licence agreement
:var __url__: url entry point on documentation
:var __version__: version
:var __date__: date of the version
"""
__author__="Ralf Schaa, r.schaa@uq.edu.au"
import os, sys
import numpy
import math
import cmath
import types
from . import magtel1d as mt1d
import esys.weipa as weipa
import esys.escript as escript
try:
import esys.finley as finley
HAVE_FINLEY = True
except ImportError:
HAVE_FINLEY = False
import esys.escript.pdetools as pdetools
import esys.escript.linearPDEs as pde
class MT_2D(object):
# class options:
_debug = False #
_solver = "DEFAULT" #
# 'private' field:
__version = 0.1 #
"""
DESCRIPTION:
------------
solves the scalar 2-D electromagnetic diffusion equation,
(where 'u' is the electric field E or magnetic field H).
[1] -div( k*grad(u) ) + q*u = 0 (+ Boundary Conditions)
In 2D the equation is solved for the transverse electric
field (TE mode) or transverse magnetic field (TM mode).
These fields are parallel to the 2D strike direction.
Based on the actual mode, the coefficients are given by:
TE: k = 1/mu , q = i*w*sigma
TM: k = 1/sigma, q = i*w*mu
'mu' is the vacuum permeability,
'i' is the imaginary unit
'w' is the angular frequency
'sigma' is the conductivity
The EM diffusion equation is complex and is solved as
a coupled PDE for the real and imaginary parts. The
coupled PDE is given by the following equations, with
Er, Ei and Hr, Hi are the real and imaginary components
of the electric and magnetic field, respectively:
TE:
[2] div( grad(Er) ) + w*mu*sigma*Ei = 0
[3] div( grad(Ei) ) - w*mu*sigma*Er = 0
the complementary magnetic fields
are calculated via Faraday's Law:
[4] Hr =-d/dz(Ei) / (w*mu)
[5] Hi = d/dz(Er) / (w*mu)
TM:
[6] div( rho*grad(Hr) ) + w*mu*Hi = 0
[7] div( rho*grad(Hi) ) - w*mu*Hr = 0
(resistivity 'rho' is 1/sigma)
the complementary electric fields
are calculated via Ampere's Law:
[8] Er = d/dz(Hr) * rho
[9] Ei = d/dz(Hi) * rho
Based on the ratio of electric to magnetic field
apparent resistivity and phase is calculated, viz:
rho_a = (1/w*mu) * [ (Er)^2 + (Ei)^2 ] / [ (Hr)^2 + (Hi)^2 ]
phase = arctan( [Ei*Hr - Er*Hi] / [Er*Hr + Ei*Hi] )
Boundary conditions:
--------------------
the source term on the right-hand-side of equation [1] is zero,
i.e. no artificial source is employed but instead the 'source'
is provided via the boundary conditions of the PDE which are
given as Dirichlet conditions at all boundaries. To calculate
the Dirichlet values, a 1D response is calculated at the left
and right boundary (based on the 1D recursion formula for MT).
Interpolation from the left to the right sides then provides
the values at the top and bottom boundary. See module 'mt1d'
for details of the computation of the 1D response. Once the
values on the boundaries have been calculated, the values
inside the domain are solved in this class.
"""
def __init__(self, domain, mode, freq_def, tags, rho, rho_1d, ifc_1d,
xstep=100, zstep=100, maps=None, plot=False, limits=None):
"""
DESCRIPTION:
-----------
Constructor which initialises the 2D magnetotelluric class:
(*) check for argument type
(*) check for valid argument values
(*) initialises required values
ARGUMENTS:
----------
param domain :: the 2d mesh domain
type domain :: ``escript data object``
param mode :: TE or TM mode
type mode :: ``string``
param freq_def :: highest/lowest frequency & points per decade
type freq_def :: ``dictionary``
param tags :: the tag names of the regions defined in the mesh
type tags :: ``list``
param rho :: the resistivity values of the regions in the mesh
type rho :: ``list``
param rho_1d :: the resistivity values at the left & right boundary
type rho_1d :: ``dictionary``
param ifc_1d :: the layer interface depths of the left & right boundary
type ifc_1d :: ``dictionary``
param xstep :: user-defined step size for horizontal sample list
type xstep :: ``number`` (optional)
param zstep :: user-defined step size for vertical sample list
type zstep :: ``number`` (optional)
param maps :: list with user-defined functions which map the resistivity for each region
type maps :: ``list`` (optional)
param plot :: user-defined flag to show a plot of apparent resistivity and phase at each frequency
type plot :: ``boolean`` (optional)
DATA ATTRIBUTES:
---------------
self.domain :: escript data object of mesh
self.X :: escript data object with all mesh coordinates
self.mode :: string with TE or TM mode
self.xmin :: float with x-coordinate minimum
self.xmax :: float with x-coordinate maximum
self.zmin :: float with z-coordinate minimum
self.zmax :: float with z-coordinate maximum
self.zstep :: number with sample step in vertical direction
self.xstep :: number with sample step in horizontal direction
self.rho :: list with resistivity values of all regions
self.rho_1d :: dictionary with resistivity values at boundaries left/right
self.ifc_1d :: dictionary with interface depths at boundaries left/right
self.plot :: boolean flag to show plots of apparent resistivity and phase
self.sigma :: escript data object with the conductivity model (based on 'rho' and 'maps')
self.frequencies :: list of sounding frequencies
self.boundary_mask :: Dirichlet mask at boundaries
"""
if not HAVE_FINLEY:
raise ImportError("Finley module not available")
#make python3 compatible, since long disappeared in python 3
if sys.version_info[0] == 3:
long_type = int
else:
long_type = long
# ---
# Checks
# ---
# Types:
if not isinstance(domain, escript.Domain):
raise ValueError("Input parameter DOMAIN must be an Escript mesh")
if not isinstance(mode, str):
raise ValueError("Input parameter MODE must be a string")
if not isinstance(freq_def, dict) or len(freq_def) != 3:
raise ValueError("Input parameter FREQ_DEF must be a dictionary with length 3")
if not isinstance(tags, list) or not all(isinstance(t,str) for t in tags):
raise ValueError("Input parameter TAGS must be a list of strings")
if not isinstance(rho, list) or not all(isinstance(d,(int,long_type,float)) for d in rho):
raise ValueError("Input parameter RHO must be a list of numbers")
if not isinstance(rho_1d, dict) or len(rho_1d) != 2:
raise ValueError("Input parameter RHO_1D must be a dictionary with length 2")
if not isinstance(ifc_1d, dict) or len(ifc_1d) != 2:
raise ValueError("Input parameter IFC_1D must be a dictionary with length 2")
if not isinstance(xstep, (int,long_type,float)):
raise ValueError("Optional input parameter XSTEP must be a number")
if not isinstance(zstep, (int,long_type,float)):
raise ValueError("Optional input parameter ZSTEP must be a number")
if maps is not None:
if not isinstance(maps, list) or not all(isinstance(m,(types.FunctionType, types.NoneType)) for m in maps):
raise ValueError("Optional input parameter MAPS must be a list of Functions or Nones")
if plot is not None:
if not isinstance(plot, bool):
raise ValueError("Optional input parameter PLOT must be True or False")
# Values:
if mode.upper() != "TE" and mode.upper() != "TM": # Check mode:
raise ValueError("Input parameter mode must be either 'TE' or 'TM'")
if not 'high' in freq_def and not 'low' in freq_def and not 'step' in freq_def:
raise ValueError("Input dictionary FREQ_DEF must have keys 'high', 'low' and 'step' defined" )
if freq_def['high'] < freq_def['low']:
raise ValueError("High frequency value is smaller than low frequency value in input parameter FREQ_DEF")
if freq_def['step'] < 1:
raise ValueError("Step frequency value is smaller than 1 in input parameter FREQ_DEF")
if not all(r>0 for r in rho): # Check resistivity values:
raise ValueError("Input parameter RHO must be all positive")
if len(rho) != len(tags): # Check resistivity list-length:
raise ValueError("Input parameter RHO must have the same length as input parameter TAGS")
if not 'left' in rho_1d and not 'right' in rho_1d:
raise ValueError("Input dictionary RHO_1D must have keys 'left' and 'right' defined" )
if not 'left' in ifc_1d and not 'right' in ifc_1d:
raise ValueError("Input dictionary IFC_1D must have keys 'left' and 'right' defined" )
if len(ifc_1d['left'])-1 != len(rho_1d['left']) and len(ifc_1d['right'])-1 != len(rho_1d['right']):
raise ValueError("Lists with values in input dictionary RHO_1D must have length equal to IFC_1D" )
if xstep < 0.5: # Step size should be non-zero but should not be smaller than 0.5m:
raise ValueError("Input parameter XSTEP must be at least 0.5" )
if zstep < 0.5: # Step size should be non-zero but should not be smaller than 0.5m:
raise ValueError("Input parameter ZSTEP must be at least 0.5" )
# ---
# Domain coordinates & tags:
# ---
# Extract the model coordinates..
X = escript.Solution(domain).getX()
# Get the Min/Max coordinates:
xmin = escript.inf(X[0])
xmax = escript.sup(X[0])
zmin = escript.inf(X[1])
zmax = escript.sup(X[1])
# Get the tag names from the mesh file
mesh_tags = escript.getTagNames(domain)
if xmin >= xmax or zmin >= zmax: raise ValueError("The mesh limits are not valid (min >= max)" )
if zmin >= 0 : raise ValueError("The mesh must be defined with a negative vertical axis" )
if not set(mesh_tags) == set(tags) :
print("user-tags:", tags)
print("mesh-tags:", mesh_tags)
raise ValueError("Input parameter TAGS does not match the tags defined in the mesh")
# ---
# Define the boundary mask:
# ---
boundary_mask = self.__setBoundaryMask(X)
# ---
# Calculate list of sounding frequencies:
# ---
frequencies = self.__getSoundingFrequencies(freq_def)
# ---
# Tag the domain with conductivity maps:
# ---
sigma_model = self.__tagDomain(domain, X, tags, rho, maps)
# Check for valid values
if escript.inf(sigma_model) < 0 or escript.sup(sigma_model) < 0:
raise ValueError("Negative conductivity encountered" )
if cmath.isnan( escript.inf(sigma_model) ) or \
cmath.isnan( escript.sup(sigma_model) ) or \
cmath.isinf( escript.sup(sigma_model) ):
raise ValueError("The conductivity model contains NaNs or INFs" )
# ---
# Projector and Locator objects.
# ---
print("Setting up Escript Locator and Projector objects...")
# Setup a list with sample points along the vertical mesh extent, bottom to top:
xsample = self.__getSamplePoints(escript.inf(X[0]),escript.sup(X[0]),xstep, constant=0.0)
# Get the locations of mesh points at the surface via the Locator object
# operating on the continuous function-space (i.e. nodes) of the domain.
loc = pdetools.Locator(escript.ContinuousFunction(domain),xsample )
# Instantiate the Projector class with smoothing on (fast=False);
# the Projector is used to calculate the gradient correctly.
proj = pdetools.Projector(domain, reduce=False, fast=False)
# ---
# Print information:
# ---
print("")
print("="*72)
print("Escript MT2D, version", self.__version)
print("="*72)
print("Mesh XMin/XMax : ", xmin, xmax)
print("Mesh ZMin/ZMax : ", zmin, zmax)
print("Number of Tags : ", len( tags ))
print("Mapping : ", {True: 'Yes', False: 'No'}[maps is not None])
print("Conductivity Model : ", sigma_model)
print("Nr of Frequencies : ", len( frequencies ))
print("Start/End/Step (Hz) : ", freq_def["high"], freq_def["low"], freq_def["step"])
print("Mode : ", mode.upper())
print("Solver : ", MT_2D._solver)
print("Show plots : ", plot)
print("="*72)
print("")
if self._debug:
print("Mesh-Info : ")
print(domain.print_mesh_info(full=False))
# ---
# Set all required variables as data attributes
# ---
self.domain = domain
self.X = X
self.mode = mode
self.xmin = xmin
self.xmax = xmax
self.zmin = zmin
self.zmax = zmax
self.zstep = zstep
self.xstep = xstep
self.rho = rho
self.rho_1d = rho_1d
self.ifc_1d = ifc_1d
self.plot = plot
self.limits = limits
self.sigma = sigma_model
self.frequencies = frequencies
self.boundary_mask = boundary_mask
self.proj = proj
self.loc = loc
#_______________________________________________________________________________
def __interpolLinear(self,dx,x0,x1,y0,y1):
"""
DESCRIPTION:
-----------
Function for simple 1D interpolation using the line-equation.
ARGUMENTS:
----------
dx :: interpolation step.
x0 :: first coordinate point of known value y0.
x1 :: last coordinate point of known value y1.
y0 :: known value at first coordinate.
y1 :: known value at last coordinate.
RETURNS:
--------
y :: list with interpolated values
"""
# Initialise return lists.
y = []
# Test for long enough interval.
if abs(x1-x0) <= dx: return y
# Test for correct abscissae.
if x0 >= x1: return y
x = x0
while x <= x1:
y.append( y0 + (y1-y0)*(x-x0)/(x1-x0) )
x = x + dx
return y
#_______________________________________________________________________________
def __getSamplePoints(self, min,max,step,constant=None):
"""
DESCRIPTION:
-----------
Function to setup a list with sample points. If a
constant value was passed a 2D list is returned
where the second column is set to the constant.
ARGUMENTS:
----------
min :: minimum value.
max :: maximum value.
step :: step value.
constant :: optional constant value for 2nd column.
RETURNS:
--------
sample :: list with samples.
"""
# Initialise return list.
sample = []
# Cycle with step-size and fill sample list.
dp = min
while dp <= max:
if constant is not None:
sample.append([dp,constant])
else:
sample.append(dp)
# Increment the step.
dp = dp + step
# Return the list:
return sample
#___________________________________________________________________________
def __getSoundingFrequencies(self, frequencies):
"""
DESCRIPTION:
-----------
Defines the sounding frequencies in Hz.
ARGUMENTS:
----------
frequencies :: dictionary with frequency start/stop/step
RETURNS:
--------
sounding_frequencies :: list with frequency values
"""
# Output list with frequencies in Hertz:
sounding_frequencies = []
# Period definition (from freq to time):
tme_1 = 1.0/frequencies["high"]
tme_n = 1.0/frequencies["low"]
# Number of points per decade:
tme_p = frequencies["step"]
# Number of periods in range:
nt = int(math.log10(tme_n/tme_1) * tme_p) + 1
# Fill list with times:
for n in range(nt):
# Sounding period in seconds:
period = tme_1*10**( (n)/float(tme_p))
# And store as frequency in Hertz:
sounding_frequencies.append( 1.0/period )
return sounding_frequencies
#_______________________________________________________________________________
def __getGradField(self, proj, mt2d_field, wm):
"""
DESCRIPTION:
-----------
Calculates the complementary fields via Faraday's Law (TE-mode)
or via Ampere's Law (TM-mode). Partial derivative w.r.t. the
vertical coordinate are taken at the surface for which an Escript
'Projector' object is used to calculate the gradient.
ARGUMENTS:
----------
proj :: escript Projection object
mt2d_field :: calculated magnetotelluric field
wm :: number with actual angular sounding frequency * mu
RETURNS:
--------
mt2d_grad :: dictionary with computed gradient fields
"""
# Define the derived gradient fields:
if self.mode.upper() == 'TE':
# H = -(dE/dz) / iwm
grad_real =-proj.getValue( escript.grad(mt2d_field["imag"])/wm )
grad_imag = proj.getValue( escript.grad(mt2d_field["real"])/wm )
#<Note the coupled dependency on real/imaginary part>:
else:
# E = (dH/dz) / sigma
grad_real = proj.getValue( escript.grad(mt2d_field["real"])/self.sigma )
grad_imag = proj.getValue( escript.grad(mt2d_field["imag"])/self.sigma )
#<'sigma' is an Escript data-object and as such the division
# will use the tagged sigma values of the associated domains>
# And return as dictionary for real and imaginary parts:
mt2d_grad = {"real": grad_real[1], "imag":grad_imag[1] }
#<Note>: the derivative w.r.t. 'z' is used (i.e. '[1]').
return mt2d_grad
#_______________________________________________________________________________
def __tagDomain(self, domain, X, tags, rho, maps):
"""
DESCRIPTION:
-----------
Defines the conductivity model. Conductivities of tagged regions can be mapped
via user-defined functions passed in 'maps'. If no user-defined functions are
passed, a constant value is applied as provided in list 'rho' for each region.
User-defined functions have 3 arguments: x-coordinate, z-coordinate, resistivity.
ARGUMENTS:
----------
domain :: escript object of mesh
X :: escript object with all coordinates
tags :: list with domain tags
rho :: list with domain resistivities
maps :: list with user-defined resistivity mappings
RETURNS:
--------
sigma :: escript object of conductivity model
"""
# Setup the conductivity structure (acts on elements and can be discontinuous).
sigma = escript.Scalar(0, escript.Function(domain))
# Setup conductivity domains.
for i in range( len(tags) ):
# Default: assign conductivity which is the inverse of resistivity:
m = 1.0/rho[i]
# Map a user-defined conductivity distribution if given:
if maps is not None:
# Guard against undefined elements:
if maps[i] is not None:
# Map the conductivity according to the defined functions:
m = maps[i]( X[0], X[1], rho[i] )
# Tag the mesh with the conductivity distributions at each iteration:
sigma += m * escript.insertTaggedValues(escript.Scalar(0,escript.Function(domain)),**{ tags[i] : 1})
if self._debug == True:
sigma.expand()
mydir = os.getcwd()
dbgfl = mydir + os.sep + "mt2d_sigma_dbg.silo"
print("")
print("DEBUG: writing SILO debug output of conductivity model:")
print(dbgfl)
print("")
weipa.saveSilo(dbgfl, sigma = sigma)
# All done:
return sigma
#_______________________________________________________________________________
def __setBoundaryMask(self, X):
"""
DESCRIPTION:
-----------
Define Dirichlet model boundaries conditions.
ARGUMENTS:
----------
X :: escript object with all coordinates
RETURNS:
--------
boundary_mask :: escript object with mask values at boundaries
"""
# Boundaries are defined as masks (1 or 0) for all mesh coordinates;
# values at the boundary are '1', whereas all other values are '0'.
mask_l = escript.whereZero( X[0] - escript.inf(X[0]) )
mask_r = escript.whereZero( X[0] - escript.sup(X[0]) )
mask_t = escript.whereZero( X[1] - escript.inf(X[1]) )
mask_b = escript.whereZero( X[1] - escript.sup(X[1]) )
# Combine the mask for all boundaries:
boundary_mask = mask_t + mask_b + mask_l + mask_r
return boundary_mask
#<Note>: this boundary mask is used later on as PDE coefficient 'q'.
#_______________________________________________________________________________
def __getBoundaryValues(self, mode, X, rho_1d, ifc_1d, xstep, zstep, frequency):
"""
DESCRIPTION:
-----------
Returns a list with boundary values along each Dirichlet boundary.
Values at the left and right side of the domain are evaluated at
sample points and interpolated across the domain. The subroutine
expects that layers at the right- and left-hand-side are defined.
ARGUMENTS:
----------
mode :: string with TE or TM mode
X :: escript object with all coordinates
rho_1d :: dictionary with resistivities at the left/right boundary
ifc_1d :: dictionary with layer interfaces at the left/right boundary
xstep :: number with step size for horizontal sample list
zstep :: number with step size for vertical sample list
frequency :: number with actual sounding frequency
RETURNS:
--------
bondary_value :: dictionary with lists of boundary values at sample points
"""
# ---
# Sample lists at vertical and horizontal boundaries.
# ---
# Horizontal extents:
xmin = escript.inf(X[0])
xmax = escript.sup(X[0])
# Vertical extents:
zmin = escript.inf(X[1])
zmax = escript.sup(X[1])
# Setup a list with sample points along the vertical mesh extent, bottom to top:
zsamples = self.__getSamplePoints(-zmax,-zmin,zstep)
# ---
# Calculate the 1D response at the left- and right-hand-side boundaries
# ---
# Instantiate an 'mt1d' object for the left- and right-hand-sides:
mt1d_left = mt1d.MT_1D( frequency, ifc_1d['left'] , rho_1d['left'] , zsamples )
mt1d_rght = mt1d.MT_1D( frequency, ifc_1d['right'], rho_1d['right'], zsamples )
# Compute the 1D field values at the sample nodes:
te1d_left, tm1d_left = mt1d_left.mt1d( )
te1d_rght, tm1d_rght = mt1d_rght.mt1d( )
# Distinguish TE and TM mode and save 1D values in dictionary:
if mode.upper() == "TE":
mt_1d = {"left":te1d_left, "right":te1d_rght}
else:
mt_1d = {"left":tm1d_left, "right":tm1d_rght}
# ---
# Interpolation across mesh.
# ---
# Now setup a 2D-table from left to right at each sampled depth for mesh-interpolation.
table2d_real = []
table2d_imag = []
# 1D-interpolation of values from left to right at different depths 'i':
for i in range( len(zsamples)):
table2d_real.append( self.__interpolLinear(xstep, xmin, xmax, mt_1d["left"].real[i], mt_1d["right"].real[i]) )
table2d_imag.append( self.__interpolLinear(xstep, xmin, xmax, mt_1d["left"].imag[i], mt_1d["right"].imag[i]) )
# 2D-interpolation to map the values on the mesh coordinates:
bondary_value_real = escript.interpolateTable( table2d_real, X, (xmin,zmin), (xstep,zstep) )
bondary_value_imag = escript.interpolateTable( table2d_imag, X, (xmin,zmin), (xstep,zstep) )
# Return the real and imaginary values as a dictionary:
boundary_value = {"real":bondary_value_real, "imag":bondary_value_imag}
return boundary_value
#_______________________________________________________________________________
def __getAppResPhase(self, mt2d_field, mt2d_grad, wm):
"""
DESCRIPTION:
-----------
Calculates the apparent resistivity and phase.
ARGUMENTS:
----------
mt2d_field :: dictionary with real/imaginary field values
mt2d_grad :: dictionary with real/imaginary gradient values
RETURNS:
--------
apparent resistivity and phase
"""
# Define the associated modelled fields in readable variables:
if self.mode.upper() == 'TE':
# Transverse electric field:
Er = mt2d_field["real"]
Ei = mt2d_field["imag"]
Hr = mt2d_grad["real"]
Hi = mt2d_grad["imag"]
else:
# Transverse magnetic field :
Hr = mt2d_field["real"]
Hi = mt2d_field["imag"]
Er = mt2d_grad["real"]
Ei = mt2d_grad["imag"]
# Return apparent Resistivity and Phase:
arho_2d = ( (Er**2 + Ei**2)/(Hr**2 + Hi**2) ) / wm
aphi_2d = escript.atan( (Ei*Hr - Er*Hi)/(Er*Hr + Ei*Hi) ) * 180.0/cmath.pi
return arho_2d, aphi_2d
#_______________________________________________________________________________
def __showPlot(self, loc, rho_2d, phi_2d, f, **kwargs):
"""
DESCRIPTION:
-----------
Plot of apparent resistivity and phase. Requires matplotlib to be available.
ARGUMENTS:
----------
loc :: escript Locator object
rho_2d :: list with computed apparent resistivities
phi_2d :: list with computed phase values
f :: sounding frequency
RETURNS:
--------
Plot in window.
"""
try:
import matplotlib.pyplot as plt
except ImportError:
print("Warning: matplotlib not available, plot will not be shown")
return
# Abscissas/Ordinates:
x = numpy.array( loc.getX() )[:,0]
y0 = numpy.array( loc.getValue(rho_2d) )
y1 = numpy.array( loc.getValue(phi_2d) )
# Plot labels:
title = 'Escript MT-2D ' + '(' + self.mode.upper() + ')' + ' freq: ' + str(f) + ' Hz'
ylbl0 = r'Apparent Resistivity $(\Omega\cdot\,m)$'
ylbl1 = r'Phase $(^{\circ})$'
xlbl1 = 'Easting (m)'
# Setup the plot window with app. res. on top and phase on bottom:
f, ax = plt.subplots(2, figsize=(8,8), sharex=True) # Mind shared axis
f.subplots_adjust(top=0.9) # Little extra space for 'suptitle'
f.suptitle(title) # This is actually the plot-title
# Top: apparent resistivity on semi-log plot
ax[0].plot(x,y0, color='red') # semilogy
ax[0].grid(b=True, which='both', color='grey',linestyle=':')
ax[0].set_title( ylbl0 )
# Plot limits in **kwargs:
if 'limits' in kwargs:
ax[0].set_xlim(kwargs["limits"])
# Bottom: phase on linear plot
ax[1].plot(x,y1, color='blue')
ax[1].grid(b=True, which='both', color='grey',linestyle=':')
ax[1].set_xlabel( xlbl1 )
ax[1].set_title( ylbl1 )
# Plot limits in **kwargs:
if 'limits' in kwargs:
ax[1].set_xlim(kwargs["limits"])
plt.show()
#_______________________________________________________________________________
def __setSolver(self, mode, domain, sigma, boundary_mask, boundary_value, f):
"""
DESCRIPTION:
-----------
Setups the coupled PDE for real and complex part.
ARGUMENTS:
----------
mode :: string with TE or TM mode
domain :: escript object with mesh domain
sigma :: escript object with conductivity model
boundary_mask :: escript object with boundary mask
boundary_value :: dictionary with real/imag boundary values
f :: sounding frequency
RETURNS:
--------
mt2d_fields :: dictionary with solved PDE, magnetotelluric fields real/imag
"""
# Constants:
pi = cmath.pi # Ratio circle circumference to diameter.
mu0 = 4*pi*1e-7 # Free space permeability in V.s/(A.m).
wm = 2*pi*f*mu0 # Angular frequency times mu0.
# ---
# Setup the coupled PDE for real/imaginary parts:
# ---
# Initialise the PDE object for two coupled equations (real/imaginary).
mtpde = pde.LinearPDE(domain, numEquations=2)
# If set, solve the 2D case using the direct solver:
if MT_2D._solver.upper() == "DIRECT":
mtpde.getSolverOptions().setSolverMethod(pde.SolverOptions().DIRECT)
else:
mtpde.getSolverOptions().setSolverMethod(pde.SolverOptions().DEFAULT)
# Now initialise the PDE coefficients 'A' and 'D',
# as well as the Dirichlet variables 'q' and 'r':
A = mtpde.createCoefficient("A")
D = mtpde.createCoefficient("D")
q = mtpde.createCoefficient("q")
r = mtpde.createCoefficient("r")
# Set the appropriate values for the coefficients depending on the mode:
if mode.upper() == "TE":
a_val = 1.0
d_val = wm*sigma
elif mode.upper() == "TM":
a_val = 1.0/sigma
d_val = wm
# ---
# Define the PDE parameters, mind boundary conditions.
# ---
# Now define the rank-4 coefficient A:
for i in range(domain.getDim()):
A[0,i,0,i] = a_val
A[1,i,1,i] = a_val
# And define the elements of 'D' which are decomposed into real/imaginary values:
D[0,0] = 0 ; D[1,0] = d_val
D[0,1] =-d_val ; D[1,1] = 0
# Set Dirichlet boundaries and values:
q[0] = boundary_mask ; r[0] = boundary_value['real']
q[1] = boundary_mask ; r[1] = boundary_value['imag']
# ---
# Solve the PDE
# ---
mtpde.setValue(A=A, D=D, q=q, r=r )
pde_solution = mtpde.getSolution()
# And return the real and imaginary parts individually:
mt2d_fields = {"real":pde_solution[0], "imag":pde_solution[1] }
#<Note>: the electric field is returned for TE-mode.
# the magnetic field is returned for TM-mode.
return mt2d_fields
#_______________________________________________________________________________
def pdeSolve(self):
"""
DESCRIPTION:
-----------
Solves the PDE for either the TE or the TM mode.
(TE mode is the transverse Electric field).
(TM mode is the transverse Magnetic field).
ARGUMENTS:
----------
(uses `self`)
RETURNS:
--------
mt2d :: list with real/imag fields for each sounding frequency
arho :: list with apparent resistivities for each sounding frequency
aphi :: list with phase values for each sounding frequency
"""
# ---
# Constants.
# ---
# Pi & vacuum permeability:
pi = cmath.pi
mu = 4*pi*1e-7
# Number of frequencies:
nfreq = len(self.frequencies)
# ---
# Solve the PDE for all frequencies.
# ---
# Prepare lists to store the values at each frequency:
arho = []
aphi = []
mt2d = []
# Cycle over all frequencies:
print("Solving for frequency: ...")
for n in range( nfreq ):
f = self.frequencies[n] # actual frequency (Hz)
wm = (2*pi*f)*mu # angular frequency (rad/s)
T = 1.0 / f # sounding period (s)
print(n+1,":", f, "(Hz)")
# Calculate 1D Dirichlet boundary values:
boundary_value = self.__getBoundaryValues(self.mode.upper(), self.X,
self.rho_1d, self.ifc_1d, self.xstep, self.zstep, f)
# Solve the 2D-MT PDE:
fld_2d = self.__setSolver(self.mode.upper(),self.domain, self.sigma,
self.boundary_mask, boundary_value, f)
# Calculate the field gradients:
grd_2d = self.__getGradField(self.proj, fld_2d, wm)
# Calculate the apparent resistivity and phase:
rho_2d, phi_2d = self.__getAppResPhase(fld_2d, grd_2d, wm)
# Save in lists for each frequency:
mt2d.append( fld_2d )
arho.append( self.loc.getValue(rho_2d) )
aphi.append( self.loc.getValue(phi_2d) )
# Optionally plot the apparent resistivity and phase:
if self.plot:
self.__showPlot(self.loc, rho_2d, phi_2d, f, limits=self.limits)
# ---
# All done
# ---
print("field calculations finished.")
return mt2d, arho, aphi
#_______________________________________________________________________________
|