This file is indexed.

/usr/lib/python3/dist-packages/photutils/aperture/core.py is in python3-photutils 0.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
import abc
import copy
import warnings
from collections import OrderedDict

import numpy as np
from astropy.extern import six
from astropy.io import fits
from astropy.nddata import support_nddata
from astropy.table import QTable
import astropy.units as u
from astropy.utils.exceptions import AstropyUserWarning
from astropy.utils.misc import InheritDocstrings
from astropy.wcs import WCS


__all__ = ['Aperture', 'SkyAperture', 'PixelAperture', 'ApertureMask',
           'aperture_photometry']


def _get_version_info():
    from astropy import __version__
    astropy_version = __version__

    from photutils import __version__
    photutils_version = __version__

    return 'astropy: {0}, photutils: {1}'.format(astropy_version,
                                                 photutils_version)


def _sanitize_pixel_positions(positions):
    if isinstance(positions, u.Quantity):
        if positions.unit is u.pixel:
            positions = np.atleast_2d(positions.value)
        else:
            raise u.UnitsError("positions should be in pixel units")
    elif isinstance(positions, (list, tuple, np.ndarray)):
        positions = np.atleast_2d(positions)
        if positions.shape[1] != 2:
            if positions.shape[0] == 2:
                positions = np.transpose(positions)
            else:
                raise TypeError("List or array of (x, y) pixel coordinates "
                                "is expected got '{0}'.".format(positions))
    elif isinstance(positions, zip):
        # This is needed for zip to work seamlessly in Python 3
        positions = np.atleast_2d(list(positions))
    else:
        raise TypeError("List or array of (x, y) pixel coordinates "
                        "is expected got '{0}'.".format(positions))

    if positions.ndim > 2:
        raise ValueError('{0}D position array not supported. Only 2D '
                         'arrays supported.'.format(positions.ndim))

    return positions


def _translate_mask_method(method, subpixels):
    if method == 'center':
        use_exact = 0
        subpixels = 1
    elif method == 'subpixel':
        use_exact = 0
    elif method == 'exact':
        use_exact = 1
        subpixels = 1
    else:
        raise ValueError('"{0}" is not a valid method.'.format(method))

    return use_exact, subpixels


def _make_annulus_path(patch_inner, patch_outer):
    import matplotlib.path as mpath

    verts_inner = patch_inner.get_verts()
    verts_outer = patch_outer.get_verts()
    codes_inner = (np.ones(len(verts_inner), dtype=mpath.Path.code_type) *
                   mpath.Path.LINETO)
    codes_inner[0] = mpath.Path.MOVETO
    codes_outer = (np.ones(len(verts_outer), dtype=mpath.Path.code_type) *
                   mpath.Path.LINETO)
    codes_outer[0] = mpath.Path.MOVETO
    codes = np.concatenate((codes_inner, codes_outer))
    verts = np.concatenate((verts_inner, verts_outer[::-1]))

    return mpath.Path(verts, codes)


class _ABCMetaAndInheritDocstrings(InheritDocstrings, abc.ABCMeta):
    pass


@six.add_metaclass(_ABCMetaAndInheritDocstrings)
class Aperture(object):
    """
    Abstract base class for all apertures.
    """

    def __len__(self):
        if isinstance(self, SkyAperture) and self.positions.isscalar:
            return 1
        return len(self.positions)


class SkyAperture(Aperture):
    """
    Abstract base class for 2D apertures defined in celestial coordinates.
    """

    @abc.abstractmethod
    def to_pixel(self, wcs, mode='all'):
        """
        Convert the aperture to a `PixelAperture` object in pixel
        coordinates.

        Parameters
        ----------
        wcs : `~astropy.wcs.WCS`
            The WCS transformation to use.

        mode : {'all', 'wcs'}, optional
            Whether to do the transformation including distortions
            (``'all'``; default) or only including only the core WCS
            transformation (``'wcs'``).

        Returns
        -------
        aperture : `PixelAperture` object
            A `PixelAperture` object.
        """

        raise NotImplementedError('Needs to be implemented in a '
                                  'SkyAperture subclass.')


class PixelAperture(Aperture):
    """
    Abstract base class for 2D apertures defined in pixel coordinates.

    Derived classes must define a ``_slices`` property, ``to_mask`` and
    ``plot`` methods, and optionally an ``area`` method.
    """

    @abc.abstractproperty
    def _slices(self):
        """The minimal bounding box slices for the aperture(s)."""

        raise NotImplementedError('Needs to be implemented in a '
                                  'PixelAperture subclass.')

    @property
    def _geom_slices(self):
        """
        A tuple of slices to be used by the low-level
        `photutils.geometry` functions.
        """

        geom_slices = []
        for _slice, position in zip(self._slices, self.positions):
            x_min = _slice[1].start - position[0] - 0.5
            x_max = _slice[1].stop - position[0] - 0.5
            y_min = _slice[0].start - position[1] - 0.5
            y_max = _slice[0].stop - position[1] - 0.5
            geom_slices.append((slice(y_min, y_max), slice(x_min, x_max)))

        return geom_slices

    def area(self):
        """
        Return the exact area of the aperture shape.

        Returns
        -------
        area : float
            The aperture area.
        """

        raise NotImplementedError('Needs to be implemented in a '
                                  'PixelAperture subclass.')

    def mask_area(self, method='exact', subpixels=5):
        """
        Return the area of the aperture(s) mask.

        For ``method`` other than ``'exact'``, this area will be less
        than the exact analytical area (e.g. the ``area`` method).  Note
        that for these methods, the values can also differ because of
        fractional pixel positions.

        Parameters
        ----------
        method : {'exact', 'center', 'subpixel'}, optional
            The method used to determine the overlap of the aperture on
            the pixel grid.  Not all options are available for all
            aperture types.  Note that the more precise methods are
            generally slower.  The following methods are available:

                * ``'exact'`` (default):
                  The the exact fractional overlap of the aperture and
                  each pixel is calculated.  The returned mask will
                  contain values between 0 and 1.

                * ``'center'``:
                  A pixel is considered to be entirely in or out of the
                  aperture depending on whether its center is in or out
                  of the aperture.  The returned mask will contain
                  values only of 0 (out) and 1 (in).

                * ``'subpixel'``:
                  A pixel is divided into subpixels (see the
                  ``subpixels`` keyword), each of which are considered
                  to be entirely in or out of the aperture depending on
                  whether its center is in or out of the aperture.  If
                  ``subpixels=1``, this method is equivalent to
                  ``'center'``.  The returned mask will contain values
                  between 0 and 1.

        subpixels : int, optional
            For the ``'subpixel'`` method, resample pixels by this factor
            in each dimension.  That is, each pixel is divided into
            ``subpixels ** 2`` subpixels.

        Returns
        -------
        area : float
            A list of the mask area of the aperture(s).
        """

        mask = self.to_mask(method=method, subpixels=subpixels)
        return [np.sum(m.data) for m in mask]

    @abc.abstractmethod
    def to_mask(self, method='exact', subpixels=5):
        """
        Return a list of `ApertureMask` objects, one for each aperture
        position.

        Parameters
        ----------
        method : {'exact', 'center', 'subpixel'}, optional
            The method used to determine the overlap of the aperture on
            the pixel grid.  Not all options are available for all
            aperture types.  Note that the more precise methods are
            generally slower.  The following methods are available:

                * ``'exact'`` (default):
                  The the exact fractional overlap of the aperture and
                  each pixel is calculated.  The returned mask will
                  contain values between 0 and 1.

                * ``'center'``:
                  A pixel is considered to be entirely in or out of the
                  aperture depending on whether its center is in or out
                  of the aperture.  The returned mask will contain
                  values only of 0 (out) and 1 (in).

                * ``'subpixel'``:
                  A pixel is divided into subpixels (see the
                  ``subpixels`` keyword), each of which are considered
                  to be entirely in or out of the aperture depending on
                  whether its center is in or out of the aperture.  If
                  ``subpixels=1``, this method is equivalent to
                  ``'center'``.  The returned mask will contain values
                  between 0 and 1.

        subpixels : int, optional
            For the ``'subpixel'`` method, resample pixels by this factor
            in each dimension.  That is, each pixel is divided into
            ``subpixels ** 2`` subpixels.

        Returns
        -------
        mask : list of `~photutils.ApertureMask`
            A list of aperture mask objects.
        """

        raise NotImplementedError('Needs to be implemented in a '
                                  'PixelAperture subclass.')

    @staticmethod
    def _prepare_photometry_output(_list, unit=None):
        if len(_list) == 0:   # if error is not input
            return _list

        if unit is not None:
            unit = u.Unit(unit, parse_strict='warn')
            if isinstance(unit, u.UnrecognizedUnit):
                warnings.warn('The input unit is not parseable as a valid '
                              'unit.', AstropyUserWarning)
                unit = None

        if isinstance(_list[0], u.Quantity):
            # list of Quantity -> Quantity array
            output = u.Quantity(_list)

            if unit is not None:
                if output.unit != unit:
                    warnings.warn('The input unit does not agree with the '
                                  'data and/or error unit.',
                                  AstropyUserWarning)
        else:
            if unit is not None:
                output = u.Quantity(_list, unit=unit)
            else:
                output = np.array(_list)

        return output

    def do_photometry(self, data, error=None, pixelwise_error=True,
                      mask=None, method='exact', subpixels=5, unit=None):
        """
        Perform aperture photometry on the input data.

        Parameters
        ----------
        data : array_like or `~astropy.units.Quantity` instance
            The 2D array on which to perform photometry.  ``data``
            should be background subtracted.

        error : array_like or `~astropy.units.Quantity`, optional
            The pixel-wise Gaussian 1-sigma errors of the input
            ``data``.  ``error`` is assumed to include *all* sources of
            error, including the Poisson error of the sources (see
            `~photutils.utils.calc_total_error`) .  ``error`` must have
            the same shape as the input ``data``.

        pixelwise_error : bool, optional
            If `True` (default), the photometric error is calculated
            using the ``error`` values from each pixel within the
            aperture.  If `False`, the ``error`` value at the center of
            the aperture is used for the entire aperture.

        mask : array_like (bool), optional
            A boolean mask with the same shape as ``data`` where a
            `True` value indicates the corresponding element of ``data``
            is masked.  Masked data are excluded from all calculations.

        method : {'exact', 'center', 'subpixel'}, optional
            The method used to determine the overlap of the aperture on
            the pixel grid.  Not all options are available for all
            aperture types.  Note that the more precise methods are
            generally slower.  The following methods are available:

                * ``'exact'`` (default):
                  The the exact fractional overlap of the aperture and
                  each pixel is calculated.  The returned mask will
                  contain values between 0 and 1.

                * ``'center'``:
                  A pixel is considered to be entirely in or out of the
                  aperture depending on whether its center is in or out
                  of the aperture.  The returned mask will contain
                  values only of 0 (out) and 1 (in).

                * ``'subpixel'``
                  A pixel is divided into subpixels (see the
                  ``subpixels`` keyword), each of which are considered
                  to be entirely in or out of the aperture depending on
                  whether its center is in or out of the aperture.  If
                  ``subpixels=1``, this method is equivalent to
                  ``'center'``.  The returned mask will contain values
                  between 0 and 1.

        subpixels : int, optional
            For the ``'subpixel'`` method, resample pixels by this factor
            in each dimension.  That is, each pixel is divided into
            ``subpixels ** 2`` subpixels.

        unit : `~astropy.units.UnitBase` object or str, optional
            An object that represents the unit associated with the input
            ``data`` and ``error`` arrays.  Must be a
            `~astropy.units.UnitBase` object or a string parseable by
            the :mod:`~astropy.units` package.  If ``data`` or ``error``
            already have a different unit, the input ``unit`` will not
            be used and a warning will be raised.

        Returns
        -------
        aperture_sums : `~numpy.ndarray` or `~astropy.units.Quantity`
            The sums within each aperture.

        aperture_sum_errs : `~numpy.ndarray` or `~astropy.units.Quantity`
            The errors on the sums within each aperture.
        """

        data = np.asanyarray(data)

        if mask is not None:
            mask = np.asanyarray(mask)

            data = copy.deepcopy(data)    # do not modify input data
            data[mask] = 0

            if error is not None:
                # do not modify input data
                error = copy.deepcopy(np.asanyarray(error))
                error[mask] = 0.

        aperture_sums = []
        aperture_sum_errs = []
        for mask in self.to_mask(method=method, subpixels=subpixels):
            data_cutout = mask.cutout(data)

            if data_cutout is None:
                aperture_sums.append(np.nan)
            else:
                aperture_sums.append(np.sum(data_cutout * mask.data))

            if error is not None:
                error_cutout = mask.cutout(error)

                if error_cutout is None:
                    aperture_sum_errs.append(np.nan)
                else:
                    if pixelwise_error:
                        aperture_var = np.sum(error_cutout ** 2 * mask.data)
                    else:
                        # use central value (shifted for partial overlap)
                        _, slc_sm = mask._overlap_slices(error.shape)
                        yidx = int((slc_sm[0].start + slc_sm[0].stop - 1) /
                                   2. + 0.5)
                        xidx = int((slc_sm[1].start + slc_sm[1].stop - 1) /
                                   2. + 0.5)
                        error_value = error_cutout[yidx, xidx]

                        aperture_var = np.sum(error_value ** 2 *
                                              np.sum(mask.data))

                    aperture_sum_errs.append(np.sqrt(aperture_var))

        # handle Quantity objects and input units
        aperture_sums = self._prepare_photometry_output(aperture_sums,
                                                        unit=unit)
        aperture_sum_errs = self._prepare_photometry_output(aperture_sum_errs,
                                                            unit=unit)

        return aperture_sums, aperture_sum_errs

    def _prepare_plot(self, origin=(0, 0), indices=None, ax=None,
                      fill=False, **kwargs):
        """
        Prepare to plot the aperture(s) on a matplotlib
        `~matplotlib.axes.Axes` instance.

        Parameters
        ----------
        origin : array_like, optional
            The ``(x, y)`` position of the origin of the displayed
            image.

        indices : int or array of int, optional
            The indices of the aperture(s) to plot.

        ax : `matplotlib.axes.Axes` instance, optional
            If `None`, then the current `~matplotlib.axes.Axes` instance
            is used.

        fill : bool, optional
            Set whether to fill the aperture patch.  The default is
            `False`.

        kwargs
            Any keyword arguments accepted by `matplotlib.patches.Patch`.

        Returns
        -------
        plot_positions : `~numpy.ndarray`
            The positions of the apertures to plot, after any
            ``indices`` slicing and ``origin`` shift.

        ax : `matplotlib.axes.Axes` instance, optional
            The `~matplotlib.axes.Axes` on which to plot.

        kwargs
            Any keyword arguments accepted by `matplotlib.patches.Patch`.
        """

        import matplotlib.pyplot as plt

        if ax is None:
            ax = plt.gca()

        # This is necessary because the `matplotlib.patches.Patch` default
        # is ``fill=True``.  Here we make the default ``fill=False``.
        kwargs['fill'] = fill

        plot_positions = copy.deepcopy(self.positions)
        if indices is not None:
            plot_positions = plot_positions[np.atleast_1d(indices)]

        plot_positions[:, 0] -= origin[0]
        plot_positions[:, 1] -= origin[1]

        return plot_positions, ax, kwargs

    @abc.abstractmethod
    def plot(self, origin=(0, 0), indices=None, ax=None, fill=False,
             **kwargs):
        """
        Plot the aperture(s) on a matplotlib `~matplotlib.axes.Axes`
        instance.

        Parameters
        ----------
        origin : array_like, optional
            The ``(x, y)`` position of the origin of the displayed
            image.

        indices : int or array of int, optional
            The indices of the aperture(s) to plot.

        ax : `matplotlib.axes.Axes` instance, optional
            If `None`, then the current `~matplotlib.axes.Axes` instance
            is used.

        fill : bool, optional
            Set whether to fill the aperture patch.  The default is
            `False`.

        kwargs
            Any keyword arguments accepted by `matplotlib.patches.Patch`.
        """


class ApertureMask(object):
    """
    Class for an aperture mask.

    Parameters
    ----------
    mask : array_like
        A 2D array of an aperture mask representing the fractional
        overlap of the aperture on the pixel grid.  This should be the
        full-sized (i.e. not truncated) array that is the direct output
        of one of the low-level `photutils.geometry` functions.

    bbox_slice : tuple of slice objects
        A tuple of ``(y, x)`` numpy slice objects defining the aperture
        minimal bounding box.
    """

    def __init__(self, mask, bbox_slice):
        self.data = np.asanyarray(mask)
        self.shape = mask.shape
        self.slices = bbox_slice

        dy = bbox_slice[0].stop - bbox_slice[0].start
        dx = bbox_slice[1].stop - bbox_slice[1].start
        if self.data.shape != (dy, dx):
            raise ValueError('mask shape and bbox_slice do not agree.')

    @property
    def array(self):
        """The 2D mask array."""

        return self.data

    def __array__(self):
        """
        Array representation of the mask array (e.g., for matplotlib).
        """

        return self.data

    def _overlap_slices(self, shape):
        """
        Calculate the slices for the overlapping part of ``self.slices``
        and an array of the given shape.

        Parameters
        ----------
        shape : tuple of int
            The ``(ny, nx)`` shape of array where the slices are to be
            applied.

        Returns
        -------
        slices_large : tuple of slices
            A tuple of slice objects for each axis of the large array,
            such that ``large_array[slices_large]`` extracts the region
            of the large array that overlaps with the small array.

        slices_small : slice
            A tuple of slice objects for each axis of the small array,
            such that ``small_array[slices_small]`` extracts the region
            of the small array that is inside the large array.
        """

        if len(shape) != 2:
            raise ValueError('input shape must have 2 elements.')

        ymin = self.slices[0].start
        ymax = self.slices[0].stop
        xmin = self.slices[1].start
        xmax = self.slices[1].stop

        if (xmin >= shape[1] or ymin >= shape[0] or xmax <= 0 or ymax <= 0):
            # no overlap of the aperture with the data
            return None, None

        slices_large = (slice(max(ymin, 0), min(ymax, shape[0])),
                        slice(max(xmin, 0), min(xmax, shape[1])))

        slices_small = (slice(max(-ymin, 0),
                              min(ymax - ymin, shape[0] - ymin)),
                        slice(max(-xmin, 0),
                              min(xmax - xmin, shape[1] - xmin)))

        return slices_large, slices_small

    def to_image(self, shape):
        """
        Return an image of the mask in a 2D array of the given shape,
        taking any edge effects into account.

        Parameters
        ----------
        shape : tuple of int
            The ``(ny, nx)`` shape of the output array.

        Returns
        -------
        result : `~numpy.ndarray`
            A 2D array of the mask.
        """

        if len(shape) != 2:
            raise ValueError('input shape must have 2 elements.')

        mask = np.zeros(shape)

        try:
            mask[self.slices] = self.data
        except ValueError:    # partial or no overlap
            slices_large, slices_small = self._overlap_slices(shape)

            if slices_small is None:
                return None    # no overlap

            mask = np.zeros(shape)
            mask[slices_large] = self.data[slices_small]

        return mask

    def cutout(self, data, fill_value=0.):
        """
        Create a cutout from the input data over the mask bounding box,
        taking any edge effects into account.

        Parameters
        ----------
        data : array_like or `~astropy.units.Quantity`
            A 2D array on which to apply the aperture mask.

        fill_value : float, optional
            The value is used to fill pixels where the aperture mask
            does not overlap with the input ``data``.  The default is 0.

        Returns
        -------
        result : `~numpy.ndarray`
            A 2D array cut out from the input ``data`` representing the
            same cutout region as the aperture mask.  If there is a
            partial overlap of the aperture mask with the input data,
            pixels outside of the data will be assigned to
            ``fill_value``.  `None` is returned if there is no overlap
            of the aperture with the input ``data``.
        """

        data = np.asanyarray(data)
        cutout = data[self.slices]

        if cutout.shape != self.shape:
            slices_large, slices_small = self._overlap_slices(data.shape)

            if slices_small is None:
                return None    # no overlap

            cutout = np.zeros(self.shape, dtype=data.dtype)
            cutout[:] = fill_value
            cutout[slices_small] = data[slices_large]

            if isinstance(data, u.Quantity):
                cutout = u.Quantity(cutout, unit=data.unit)

        return cutout

    def apply(self, data, fill_value=0.):
        """
        Apply the aperture mask to the input data, taking any edge
        effects into account.

        The result is a mask-weighted cutout from the data.

        Parameters
        ----------
        data : array_like or `~astropy.units.Quantity`
            A 2D array on which to apply the aperture mask.

        fill_value : float, optional
            The value is used to fill pixels where the aperture mask
            does not overlap with the input ``data``.  The default is 0.

        Returns
        -------
        result : `~numpy.ndarray`
            A 2D mask-weighted cutout from the input ``data``.  If there
            is a partial overlap of the aperture mask with the input
            data, pixels outside of the data will be assigned to
            ``fill_value`` before being multipled with the mask.  `None`
            is returned if there is no overlap of the aperture with the
            input ``data``.
        """

        return self.cutout(data, fill_value=fill_value) * self.data


def _prepare_photometry_input(data, error, pixelwise_error, mask, wcs, unit):
    """
    Parse the inputs to `aperture_photometry`.

    `aperture_photometry` accepts a wide range of inputs, e.g. ``data``
    could be a numpy array, a Quantity array, or a fits HDU.  This
    requires some parsing and validation to ensure that all inputs are
    complete and consistent.  For example, the data could carry a unit
    and the wcs itself, so we need to check that it is consistent with
    the unit and wcs given as input parameters.
    """

    if isinstance(data, fits.HDUList):
        for i in range(len(data)):
            if data[i].data is not None:
                warnings.warn("Input data is a HDUList object, photometry is "
                              "run only for the {0} HDU."
                              .format(i), AstropyUserWarning)
                data = data[i]
                break

    if isinstance(data, (fits.PrimaryHDU, fits.ImageHDU)):
        header = data.header
        data = data.data

        if 'BUNIT' in header:
            bunit = u.Unit(header['BUNIT'], parse_strict='warn')
            if isinstance(bunit, u.UnrecognizedUnit):
                warnings.warn('The BUNIT in the header of the input data is '
                              'not parseable as a valid unit.',
                              AstropyUserWarning)
            else:
                data = u.Quantity(data, unit=bunit)

    if wcs is None:
        try:
            wcs = WCS(header)
        except:
            # A valid WCS was not found in the header.  Let the calling
            # application raise an exception if it needs a WCS.
            pass

    data = np.asanyarray(data)
    if data.ndim != 2:
        raise ValueError('data must be a 2D array.')

    if unit is not None:
        unit = u.Unit(unit, parse_strict='warn')
        if isinstance(unit, u.UnrecognizedUnit):
            warnings.warn('The input unit is not parseable as a valid '
                          'unit.', AstropyUserWarning)
            unit = None

    if isinstance(data, u.Quantity):
        if unit is not None and data.unit != unit:
            warnings.warn('The input unit does not agree with the data '
                          'unit.', AstropyUserWarning)
    else:
        if unit is not None:
            data = u.Quantity(data, unit=unit)

    if error is not None:
        if isinstance(error, u.Quantity):
            if unit is not None and error.unit != unit:
                warnings.warn('The input unit does not agree with the error '
                              'unit.', AstropyUserWarning)

            if np.isscalar(error.value):
                error = u.Quantity(np.broadcast_arrays(error, data),
                                   unit=error.unit)[0]
                pixelwise_error = False
                warnings.warn('Because input error was a scalar, '
                              'pixelwise_error=False is being used.',
                              AstropyUserWarning)
        else:
            if np.isscalar(error):
                error = np.broadcast_arrays(error, data)[0]
                pixelwise_error = False
                warnings.warn('Because input error was a scalar, '
                              'pixelwise_error=False is being used.',
                              AstropyUserWarning)

            if unit is not None:
                error = u.Quantity(error, unit=unit)

            error = np.asanyarray(error)

        if error.shape != data.shape:
            raise ValueError('error and data must have the same shape.')

    if mask is not None:
        mask = np.asanyarray(mask)
        if mask.shape != data.shape:
            raise ValueError('mask and data must have the same shape.')

    return data, error, pixelwise_error, mask, wcs


@support_nddata
def aperture_photometry(data, apertures, error=None, pixelwise_error=True,
                        mask=None, method='exact', subpixels=5, unit=None,
                        wcs=None):
    """
    Perform aperture photometry on the input data by summing the flux
    within the given aperture(s).

    Parameters
    ----------
    data : array_like, `~astropy.units.Quantity`, `~astropy.io.fits.ImageHDU`, or `~astropy.io.fits.HDUList`
        The 2D array on which to perform photometry. ``data`` should be
        background-subtracted.  Units can be used during the photometry,
        either provided with the data (i.e. a `~astropy.units.Quantity`
        array) or the ``unit`` keyword.  If ``data`` is an
        `~astropy.io.fits.ImageHDU` or `~astropy.io.fits.HDUList`, the
        unit is determined from the ``'BUNIT'`` header keyword.

    apertures : `~photutils.Aperture`
        The aperture(s) to use for the photometry.

    error : array_like or `~astropy.units.Quantity`, optional
        The pixel-wise Gaussian 1-sigma errors of the input ``data``.
        ``error`` is assumed to include *all* sources of error,
        including the Poisson error of the sources (see
        `~photutils.utils.calc_total_error`) .  ``error`` must have the
        same shape as the input ``data``.

    pixelwise_error : bool, optional
        If `True` (default), the photometric error is calculated using
        the ``error`` values from each pixel within the aperture.  If
        `False`, the ``error`` value at the center of the aperture is
        used for the entire aperture.

    mask : array_like (bool), optional
        A boolean mask with the same shape as ``data`` where a `True`
        value indicates the corresponding element of ``data`` is masked.
        Masked data are excluded from all calculations.

    method : {'exact', 'center', 'subpixel'}, optional
        The method used to determine the overlap of the aperture on the
        pixel grid.  Not all options are available for all aperture
        types.  Note that the more precise methods are generally slower.
        The following methods are available:

            * ``'exact'`` (default):
                The the exact fractional overlap of the aperture and
                each pixel is calculated.  The returned mask will
                contain values between 0 and 1.

            * ``'center'``:
                A pixel is considered to be entirely in or out of the
                aperture depending on whether its center is in or out of
                the aperture.  The returned mask will contain values
                only of 0 (out) and 1 (in).

            * ``'subpixel'``:
                A pixel is divided into subpixels (see the ``subpixels``
                keyword), each of which are considered to be entirely in
                or out of the aperture depending on whether its center
                is in or out of the aperture.  If ``subpixels=1``, this
                method is equivalent to ``'center'``.  The returned mask
                will contain values between 0 and 1.

    subpixels : int, optional
        For the ``'subpixel'`` method, resample pixels by this factor in
        each dimension.  That is, each pixel is divided into ``subpixels
        ** 2`` subpixels.

    unit : `~astropy.units.UnitBase` object or str, optional
        An object that represents the unit associated with the input
        ``data`` and ``error`` arrays.  Must be a
        `~astropy.units.UnitBase` object or a string parseable by the
        :mod:`~astropy.units` package.  If ``data`` or ``error`` already
        have a different unit, the input ``unit`` will not be used and a
        warning will be raised.  If ``data`` is an
        `~astropy.io.fits.ImageHDU` or `~astropy.io.fits.HDUList`,
        ``unit`` will override the ``'BUNIT'`` header keyword.

    wcs : `~astropy.wcs.WCS`, optional
        The WCS transformation to use if the input ``apertures`` is a
        `SkyAperture` object.  If ``data`` is an
        `~astropy.io.fits.ImageHDU` or `~astropy.io.fits.HDUList`,
        ``wcs`` overrides any WCS transformation present in the header.

    Returns
    -------
    table : `~astropy.table.QTable`
        A table of the photometry with the following columns:

            * ``'id'``:
              The source ID.

            * ``'xcenter'``, ``'ycenter'``:
              The ``x`` and ``y`` pixel coordinates of the input
              aperture center(s).

            * ``'celestial_center'``:
              The celestial coordinates of the input aperture center(s).
              Returned only if the input ``apertures`` is a
              `SkyAperture` object.

            * ``'aperture_sum'``:
              The sum of the values within the aperture.

            * ``'aperture_sum_err'``:
              The corresponding uncertainty in the ``'aperture_sum'``
              values.  Returned only if the input ``error`` is not
              `None`.

        The table metadata includes the Astropy and Photutils version
        numbers and the `aperture_photometry` calling arguments.

    Notes
    -----
    This function is decorated with `~astropy.nddata.support_nddata` and
    thus supports `~astropy.nddata.NDData` objects as input.
    """

    data, error, pixelwise_error, mask, wcs = \
        _prepare_photometry_input(data, error, pixelwise_error, mask, wcs,
                                  unit)

    if method == 'subpixel':
        if (int(subpixels) != subpixels) or (subpixels <= 0):
            raise ValueError('subpixels must be a positive integer.')

    apertures = np.atleast_1d(apertures)

    # convert sky to pixel apertures
    skyaper = False
    if isinstance(apertures[0], SkyAperture):
        if wcs is None:
            raise ValueError('A WCS transform must be defined by the input '
                             'data or the wcs keyword when using a '
                             'SkyAperture object.')

        skyaper = True
        skycoord_pos = apertures[0].positions

        pix_aper = [aper.to_pixel(wcs) for aper in apertures]
        apertures = pix_aper

    # do comparison in pixels to avoid comparing SkyCoord objects
    positions = apertures[0].positions
    for aper in apertures[1:]:
        if not np.array_equal(aper.positions, positions):
            raise ValueError('Input apertures must all have identical '
                             'positions.')

    calling_args = ("method='{0}', subpixels={1}, pixelwise_error={2}"
                    .format(method, subpixels, pixelwise_error))
    meta = OrderedDict()
    meta['name'] = 'Aperture photometry results'
    meta['version'] = _get_version_info()
    meta['aperture_photometry_args'] = calling_args

    tbl = QTable(meta=meta)
    tbl['id'] = np.arange(len(apertures[0]), dtype=int) + 1

    xypos_pixel = np.transpose(apertures[0].positions) * u.pixel
    tbl['xcenter'] = xypos_pixel[0]
    tbl['ycenter'] = xypos_pixel[1]

    if skyaper:
        if skycoord_pos.isscalar:
            tbl['celestial_center'] = (skycoord_pos,)
        else:
            tbl['celestial_center'] = skycoord_pos

    for i, aper in enumerate(apertures):
        aper_sum, aper_sum_err = aper.do_photometry(
            data, error=error, pixelwise_error=pixelwise_error, mask=mask,
            method=method, subpixels=subpixels)

        sum_key = 'aperture_sum'
        sum_err_key = 'aperture_sum_err'
        if len(apertures) > 1:
            sum_key += '_{}'.format(i)
            sum_err_key += '_{}'.format(i)

        tbl[sum_key] = aper_sum
        if error is not None:
            tbl[sum_err_key] = aper_sum_err

    return tbl