This file is indexed.

/usr/lib/python3/dist-packages/photutils/aperture/ellipse.py is in python3-photutils 0.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
import math

import numpy as np
from astropy.coordinates import SkyCoord
import astropy.units as u
from astropy.wcs.utils import skycoord_to_pixel

from .core import (PixelAperture, SkyAperture, ApertureMask,
                   _sanitize_pixel_positions, _translate_mask_method,
                   _make_annulus_path)
from ..geometry import elliptical_overlap_grid
from ..utils.wcs_helpers import (skycoord_to_pixel_scale_angle, assert_angle,
                                 assert_angle_or_pixel)


__all__ = ['EllipticalMaskMixin', 'EllipticalAperture', 'EllipticalAnnulus',
           'SkyEllipticalAperture', 'SkyEllipticalAnnulus']


class EllipticalMaskMixin(object):
    """
    Mixin class to create masks for elliptical and elliptical-annulus
    aperture objects.
    """

    def to_mask(self, method='exact', subpixels=5):
        """
        Return a list of `ApertureMask` objects, one for each aperture
        position.

        Parameters
        ----------
        method : {'exact', 'center', 'subpixel'}, optional
            The method used to determine the overlap of the aperture on
            the pixel grid.  Not all options are available for all
            aperture types.  Note that the more precise methods are
            generally slower.  The following methods are available:

                * ``'exact'`` (default):
                  The the exact fractional overlap of the aperture and
                  each pixel is calculated.  The returned mask will
                  contain values between 0 and 1.

                * ``'center'``:
                  A pixel is considered to be entirely in or out of the
                  aperture depending on whether its center is in or out
                  of the aperture.  The returned mask will contain
                  values only of 0 (out) and 1 (in).

                * ``'subpixel'``:
                  A pixel is divided into subpixels (see the
                  ``subpixels`` keyword), each of which are considered
                  to be entirely in or out of the aperture depending on
                  whether its center is in or out of the aperture.  If
                  ``subpixels=1``, this method is equivalent to
                  ``'center'``.  The returned mask will contain values
                  between 0 and 1.

        subpixels : int, optional
            For the ``'subpixel'`` method, resample pixels by this factor
            in each dimension.  That is, each pixel is divided into
            ``subpixels ** 2`` subpixels.

        Returns
        -------
        mask : list of `~photutils.ApertureMask`
            A list of aperture mask objects.
        """

        if method not in ('center', 'subpixel', 'exact'):
            raise ValueError('"{0}" method is not available for this '
                             'aperture.'.format(method))

        use_exact, subpixels = _translate_mask_method(method, subpixels)

        if hasattr(self, 'a'):
            a = self.a
            b = self.b
        elif hasattr(self, 'a_in'):    # annulus
            a = self.a_out
            b = self.b_out
            b_in = self.a_in * self.b_out / self.a_out
        else:
            raise ValueError('Cannot determine the aperture shape.')

        masks = []
        for position, _slice, _geom_slice in zip(self.positions, self._slices,
                                                 self._geom_slices):
            px_min, px_max = _geom_slice[1].start, _geom_slice[1].stop
            py_min, py_max = _geom_slice[0].start, _geom_slice[0].stop
            dx = px_max - px_min
            dy = py_max - py_min

            mask = elliptical_overlap_grid(px_min, px_max, py_min, py_max,
                                           dx, dy, a, b, self.theta,
                                           use_exact, subpixels)

            if hasattr(self, 'a_in'):    # annulus
                mask -= elliptical_overlap_grid(px_min, px_max, py_min,
                                                py_max, dx, dy, self.a_in,
                                                b_in, self.theta, use_exact,
                                                subpixels)

            masks.append(ApertureMask(mask, _slice))

        return masks


class EllipticalAperture(EllipticalMaskMixin, PixelAperture):
    """
    Elliptical aperture(s), defined in pixel coordinates.

    Parameters
    ----------
    positions : array_like or `~astropy.units.Quantity`
        Pixel coordinates of the aperture center(s) in one of the
        following formats:

            * single ``(x, y)`` tuple
            * list of ``(x, y)`` tuples
            * ``Nx2`` or ``2xN`` `~numpy.ndarray`
            * ``Nx2`` or ``2xN`` `~astropy.units.Quantity` in pixel units

        Note that a ``2x2`` `~numpy.ndarray` or
        `~astropy.units.Quantity` is interpreted as ``Nx2``, i.e. two
        rows of (x, y) coordinates.

    a : float
        The semimajor axis.

    b : float
        The semiminor axis.

    theta : float
        The rotation angle in radians of the semimajor axis from the
        positive ``x`` axis.  The rotation angle increases
        counterclockwise.

    Raises
    ------
    ValueError : `ValueError`
        If either axis (``a`` or ``b``) is negative.
    """

    def __init__(self, positions, a, b, theta):
        try:
            self.a = float(a)
            self.b = float(b)
            self.theta = float(theta)
        except TypeError:
            raise TypeError("'a' and 'b' and 'theta' must be numeric, "
                            "received {0} and {1} and {2}."
                            .format((type(a), type(b), type(theta))))

        if a < 0 or b < 0:
            raise ValueError("'a' and 'b' must be non-negative.")

        self.positions = _sanitize_pixel_positions(positions)

    @property
    def _slices(self):
        # TODO:  use an actual minimal bounding box
        radius = max(self.a, self.b)
        x_min = np.floor(self.positions[:, 0] - radius + 0.5).astype(int)
        x_max = np.floor(self.positions[:, 0] + radius + 1.5).astype(int)
        y_min = np.floor(self.positions[:, 1] - radius + 0.5).astype(int)
        y_max = np.floor(self.positions[:, 1] + radius + 1.5).astype(int)

        return [(slice(ymin, ymax), slice(xmin, xmax))
                for xmin, xmax, ymin, ymax in zip(x_min, x_max, y_min, y_max)]

    def area(self):
        return math.pi * self.a * self.b

    def plot(self, origin=(0, 0), indices=None, ax=None, fill=False,
             **kwargs):
        import matplotlib.patches as mpatches

        plot_positions, ax, kwargs = self._prepare_plot(
            origin, indices, ax, fill, **kwargs)

        theta_deg = self.theta * 180. / np.pi
        for position in plot_positions:
            patch = mpatches.Ellipse(position, 2.*self.a, 2.*self.b,
                                     theta_deg, **kwargs)
            ax.add_patch(patch)


class EllipticalAnnulus(EllipticalMaskMixin, PixelAperture):
    """
    Elliptical annulus aperture(s), defined in pixel coordinates.

    Parameters
    ----------
    positions : array_like or `~astropy.units.Quantity`
        Pixel coordinates of the aperture center(s) in one of the
        following formats:

            * single ``(x, y)`` tuple
            * list of ``(x, y)`` tuples
            * ``Nx2`` or ``2xN`` `~numpy.ndarray`
            * ``Nx2`` or ``2xN`` `~astropy.units.Quantity` in pixel units

        Note that a ``2x2`` `~numpy.ndarray` or
        `~astropy.units.Quantity` is interpreted as ``Nx2``, i.e. two
        rows of (x, y) coordinates.

    a_in : float
        The inner semimajor axis.

    a_out : float
        The outer semimajor axis.

    b_out : float
        The outer semiminor axis.  The inner semiminor axis is
        calculated as:

            .. math:: b_{in} = b_{out}
                \\left(\\frac{a_{in}}{a_{out}}\\right)

    theta : float
        The rotation angle in radians of the semimajor axis from the
        positive ``x`` axis.  The rotation angle increases
        counterclockwise.

    Raises
    ------
    ValueError : `ValueError`
        If inner semimajor axis (``a_in``) is greater than outer semimajor
        axis (``a_out``).

    ValueError : `ValueError`
        If either the inner semimajor axis (``a_in``) or the outer semiminor
        axis (``b_out``) is negative.
    """

    def __init__(self, positions, a_in, a_out, b_out, theta):
        try:
            self.a_in = float(a_in)
            self.a_out = float(a_out)
            self.b_out = float(b_out)
            self.theta = float(theta)
        except TypeError:
            raise TypeError("'a_in' and 'a_out' and 'b_out' and 'theta' must "
                            "be numeric, received {0} and {1} and {2} and "
                            "{3}.".format((type(a_in), type(a_out),
                                           type(b_out), type(theta))))

        if not (a_out > a_in):
            raise ValueError("'a_out' must be greater than 'a_in'")
        if a_in < 0 or b_out < 0:
            raise ValueError("'a_in' and 'b_out' must be non-negative")

        self.b_in = b_out * a_in / a_out

        self.positions = _sanitize_pixel_positions(positions)

    @property
    def _slices(self):
        # TODO:  use an actual minimal bounding box
        radius = max(self.a_out, self.b_out)
        x_min = np.floor(self.positions[:, 0] - radius + 0.5).astype(int)
        x_max = np.floor(self.positions[:, 0] + radius + 1.5).astype(int)
        y_min = np.floor(self.positions[:, 1] - radius + 0.5).astype(int)
        y_max = np.floor(self.positions[:, 1] + radius + 1.5).astype(int)

        return [(slice(ymin, ymax), slice(xmin, xmax))
                for xmin, xmax, ymin, ymax in zip(x_min, x_max, y_min, y_max)]

    def area(self):
        return math.pi * (self.a_out * self.b_out - self.a_in * self.b_in)

    def plot(self, origin=(0, 0), indices=None, ax=None, fill=False,
             **kwargs):
        import matplotlib.patches as mpatches

        plot_positions, ax, kwargs = self._prepare_plot(
            origin, indices, ax, fill, **kwargs)

        theta_deg = self.theta * 180. / np.pi
        for position in plot_positions:
            patch_inner = mpatches.Ellipse(position, 2.*self.a_in,
                                           2.*self.b_in, theta_deg, **kwargs)
            patch_outer = mpatches.Ellipse(position, 2.*self.a_out,
                                           2.*self.b_out, theta_deg, **kwargs)
            path = _make_annulus_path(patch_inner, patch_outer)
            patch = mpatches.PathPatch(path, **kwargs)
            ax.add_patch(patch)


class SkyEllipticalAperture(SkyAperture):
    """
    Elliptical aperture(s), defined in sky coordinates.

    Parameters
    ----------
    positions : `~astropy.coordinates.SkyCoord`
        Celestial coordinates of the aperture center(s). This can be
        either scalar coordinates or an array of coordinates.

    a : `~astropy.units.Quantity`
        The semimajor axis, either in angular or pixel units.

    b : `~astropy.units.Quantity`
        The semiminor axis, either in angular or pixel units.

    theta : `~astropy.units.Quantity`
        The position angle (in angular units) of the semimajor axis.
        For a right-handed world coordinate system, the position angle
        increases counterclockwise from North (PA=0).
    """

    def __init__(self, positions, a, b, theta):
        if isinstance(positions, SkyCoord):
            self.positions = positions
        else:
            raise TypeError("positions should be a SkyCoord instance")

        assert_angle_or_pixel('a', a)
        assert_angle_or_pixel('b', b)
        assert_angle('theta', theta)

        if a.unit.physical_type != b.unit.physical_type:
            raise ValueError("a and b should either both be angles "
                             "or in pixels")

        self.a = a
        self.b = b
        self.theta = theta

    def to_pixel(self, wcs, mode='all'):
        """
        Convert the aperture to an `EllipticalAperture` instance in
        pixel coordinates.

        Parameters
        ----------
        wcs : `~astropy.wcs.WCS`
            The WCS transformation to use.

        mode : {'all', 'wcs'}, optional
            Whether to do the transformation including distortions
            (``'all'``; default) or only including only the core WCS
            transformation (``'wcs'``).

        Returns
        -------
        aperture : `EllipticalAperture` object
            An `EllipticalAperture` object.
        """

        x, y = skycoord_to_pixel(self.positions, wcs, mode=mode)
        central_pos = SkyCoord([wcs.wcs.crval], frame=self.positions.name,
                               unit=wcs.wcs.cunit)
        xc, yc, scale, angle = skycoord_to_pixel_scale_angle(central_pos, wcs)

        if self.a.unit.physical_type == 'angle':
            a = (scale * self.a).to(u.pixel).value
            b = (scale * self.b).to(u.pixel).value
        else:  # pixel
            a = self.a.value
            b = self.b.value

        theta = (angle + self.theta).to(u.radian).value

        pixel_positions = np.array([x, y]).transpose()

        return EllipticalAperture(pixel_positions, a, b, theta)


class SkyEllipticalAnnulus(SkyAperture):
    """
    Elliptical annulus aperture(s), defined in sky coordinates.

    Parameters
    ----------
    positions : `~astropy.coordinates.SkyCoord`
        Celestial coordinates of the aperture center(s). This can be
        either scalar coordinates or an array of coordinates.

    a_in : `~astropy.units.Quantity`
        The inner semimajor axis, either in angular or pixel units.

    a_out : `~astropy.units.Quantity`
        The outer semimajor axis, either in angular or pixel units.

    b_out : float
        The outer semiminor axis, either in angular or pixel units.  The
        inner semiminor axis is calculated as:

            .. math:: b_{in} = b_{out}
                \\left(\\frac{a_{in}}{a_{out}}\\right)

    theta : `~astropy.units.Quantity`
        The position angle (in angular units) of the semimajor axis.
        For a right-handed world coordinate system, the position angle
        increases counterclockwise from North (PA=0).
    """

    def __init__(self, positions, a_in, a_out, b_out, theta):
        if isinstance(positions, SkyCoord):
            self.positions = positions
        else:
            raise TypeError("positions should be a SkyCoord instance")

        assert_angle_or_pixel('a_in', a_in)
        assert_angle_or_pixel('a_out', a_out)
        assert_angle_or_pixel('b_out', b_out)
        assert_angle('theta', theta)

        if a_in.unit.physical_type != a_out.unit.physical_type:
            raise ValueError("a_in and a_out should either both be angles "
                             "or in pixels")

        if a_out.unit.physical_type != b_out.unit.physical_type:
            raise ValueError("a_out and b_out should either both be angles "
                             "or in pixels")

        self.a_in = a_in
        self.a_out = a_out
        self.b_out = b_out
        self.theta = theta

    def to_pixel(self, wcs, mode='all'):
        """
        Convert the aperture to an `EllipticalAnnulus` instance in pixel
        coordinates.

        Parameters
        ----------
        wcs : `~astropy.wcs.WCS`
            The WCS transformation to use.

        mode : {'all', 'wcs'}, optional
            Whether to do the transformation including distortions
            (``'all'``; default) or only including only the core WCS
            transformation (``'wcs'``).

        Returns
        -------
        aperture : `EllipticalAnnulus` object
            An `EllipticalAnnulus` object.
        """

        x, y = skycoord_to_pixel(self.positions, wcs, mode=mode)
        central_pos = SkyCoord([wcs.wcs.crval], frame=self.positions.name,
                               unit=wcs.wcs.cunit)
        xc, yc, scale, angle = skycoord_to_pixel_scale_angle(central_pos, wcs)

        if self.a_in.unit.physical_type == 'angle':
            a_in = (scale * self.a_in).to(u.pixel).value
            a_out = (scale * self.a_out).to(u.pixel).value
            b_out = (scale * self.b_out).to(u.pixel).value
        else:
            a_in = self.a_in.value
            a_out = self.a_out.value
            b_out = self.b_out.value

        theta = (angle + self.theta).to(u.radian).value

        pixel_positions = np.array([x, y]).transpose()

        return EllipticalAnnulus(pixel_positions, a_in, a_out, b_out, theta)